Find the L.C.M. and H.C.F. of 260 and 120and verify that LCM × HCF = product of the two numbers.
Answers
AnsWer :
31200.
SolutioN :
Let,
- The number be N1 = 260.
- Other number be 120.
N1
2 | 260
5 | 1 30
2 | 26
13 | 13
| 1
___________
For N2.
2 | 120
2 | 60
2 | 30
3 | 10
5 | 5
| 1
* LCM ( N1 , N2 ) →
- 2 * 2 * 5 * 13 → 2² * 5 * 13.
- 2 * 2 * 2 * 3 * 5. → 2³ * 3 * 5.
→ 2³ * 3 * 5 * 13.
→ 8 * 3 * 5 * 13
→ 1560.
____________________
* HCF ( N1 , N2 ) →
- 2 * 2 * 5 * 13 → 2² * 5 * 13.
- 2 * 2 * 2 * 3 * 5. → 2³ * 3 * 5.
→ 2² * 5
→ 4 * 5
→ 20.
Now, Product of HCF * LCM
→ 1560 * 20
→ 31200.
________________________
Let's find product of N1 and N2.
→ N1 * N2 → 120 * 260.
→ 31200.
__________
Now, We know.
Hence Verify.
Step-by-step explanation:
QUESTION:-
Find the L.C.M. and H.C.F. of 260 and 120and verify that LCM × HCF = product of the two numbers.
ANSWER :-
Let,
The number be N1 = 260.
Other number be 120.
N1
2 | 260
5 | 1 30
2 | 26
13 | 13
| 1
___________
For N2.
2 | 120
2 | 60
2 | 30
3 | 10
5 | 5
| 1
* LCM ( N1 , N2 ) →
2 * 2 * 5 * 13 → 2² * 5 * 13.
2 * 2 * 2 * 3 * 5. → 2³ * 3 * 5.
→ 2³ * 3 * 5 * 13.
→ 8 * 3 * 5 * 13
→ 1560.
___________________
* HCF ( N1 , N2 )
2 * 2 * 5 * 13 → 2² * 5 * 13.
2 * 2 * 2 * 3 * 5. → 2³ * 3 * 5.
→ 2² * 5
→ 4 * 5
→ 20.
Now, Product of HCF * LCM
→ 1560 * 20
→ 31200.
________________________
Let's find product of N1 and N2.
→ N1 * N2 → 120 * 260.
→ 31200.
__________