Math, asked by yeetiest, 7 months ago

Find the L.C.M of the following by prime factorisation method:
(i) 42, 63, 162
(ii) 42, 78, 104, 112

Answers

Answered by posanisrinivasachary
3

1)1134

2)4368

Step-by-step explanation:

Plzz mark me as brainliest

Answered by Anonymous
16

Question:-

\odot Find the L.C.M of the following by prime factorisation method:-

  • (i) 42, 63, 162
  • (ii) 42, 78, 104, 112

Answer:-

(i) 42, 63, 162.

\begin {array} {r | l} 2 & 42 \\ 3 & 21 \\  7 & 7 \\ & 1 \end {array}

\begin {array} {r | l} 3 & 63 \\ 3 & 21 \\ 7 & 7 \\  & 1 \end {array}

\begin {array} {r | l} 2 & 162 \\  3 & 81 \\  3 & 27 \\ 3 & 9 \\ 3 & 3 \\ & 1 \end {array}

 \implies \tt 42 = 2 \times 3 \times 7

 \implies  \tt 63 = 3 \times 3 \times 7

\implies  \tt 162 = 2 \times 3 \times 3 \times 3  \times 3

So the LCM is 1134

__________________________________

(ii) 42, 78, 104, 112

\begin {array} {r | l} 2 & 42 \\  3 & 21 \\ 7 & 7 \\ & 1 \end {array}

\begin {array} {r | l} 2 & 78 \\  3 & 39 \\ 13 & 13 \\ & 1 \end {array}

\begin {array} {r | l} 2 & 104 \\  2 & 52 \\  2 & 26 \\ 13 & 13 \\ & 1 \end {array}

\begin {array} {r | l} 2 & 112 \\ 2 & 56 \\ 2 & 28 \\  2 & 14 \\ 7 & 7 \\ & 1 \end {array}

 \implies \tt 42 = 2 \times 3 \times 7

\implies  \tt 78 = 2 \times 3 \times 13

\implies  \tt 104 = 2 \times 2 \times 2 \times 13

\implies \tt 112 = 2 \times 2  \times 2 \times 2 \times 7

So, the LCM is 30,576

Finally we are done with the problem

Similar questions