Find the last digit for the given exponents: (101)^102;(222)^3333;(101211)^7890.
Answers
Answered by
1
101^102=1^102
=1.
222^3333=2^4(833)+2^1
=6+2
=8.
101211^7890=1^7890
=1.
=1.
222^3333=2^4(833)+2^1
=6+2
=8.
101211^7890=1^7890
=1.
Similar questions