Math, asked by umamaheswariplr, 3 months ago

Find the lateral surface area and the total surface area of a cuboid whose length = 16
cm, breadth = 12 cm and height = 8 cm​

Answers

Answered by kuralanbuvanathi
0

Answer:

Please mark me as the Brainliest

Step-by-step explanation:

Lateral Surface area = 2 height(length + breadth)

= 2. (8) (16 + 12)

= 16 × 28

= 448 cm²

Total Surface area = 2 (Length x Breadth + breadth x height + Length x height)

= 2 [ (16).(12) + (12).(8) + (16).(8) ]

= 2 [ 192 + 96 + 128 ]

= 2 × 416

= 832 cm²

Lateral Surface Area of Cuboid = 448 cm²

Total Surface Area of Cuboid = 832 cm²

Answered by Anonymous
33

\large\sf\underline{Given\::}

  • Length of the cuboid = 16 cm.

  • Breadth of the cuboid = 12 cm.

  • Height of the cuboid = 8 cm.

\large\sf\underline{To\:find\::}

  • Total surface area ( TSA ) of the cuboid

  • Lateral surface area ( LSA ) of the cuboid

\large\sf\underline{Solution\::}

We know ,

\large{\mathfrak{TSA \:of\:the\:cuboid\:=\:2(lb+bh+lh)}}

where :

  • l stands for {\sf{{\pink{Length}}}}.

  • b stands for {\sf{{\pink{breadth}}}}.

  • h stands for {\sf{{\pink{height}}}}.

Substituting the given values in the formula :

\sf:\implies\:TSA\:=\:2[(16 \times 12) +(12 \times 8) +(16 \times 8) ]

\sf:\implies\:TSA\:=\:2[192 + 96 + 128]

\sf:\implies\:TSA\:=\:2[416]

\sf:\implies\:TSA\:=\:2 \times 416

\small{\underline{\boxed{\mathrm\red{:\implies\:TSA\:=832\:sq.cm}}}}

___________________________

Now,

\large{\mathfrak{LSA \:of\:the\:cuboid\:=\:2h(l+b)}}

where :

  • l stands for {\sf{{\pink{Length}}}}.

  • b stands for {\sf{{\pink{breadth}}}}.

  • h stands for {\sf{{\pink{height}}}}.

Substituting the given values in the formula :

\sf:\implies\:LSA\:=\:2 \times 8[16+12]

\sf:\implies\:LSA\:=\:2 \times 8[28]

\sf:\implies\:LSA\:=\:2 \times 8 \times 28

\sf:\implies\:LSA\:=\:16 \times 28

\small{\underline{\boxed{\mathrm\red{:\implies\:LSA\:=448\:sq.cm}}}}

___________________________

!! Hope it helps !!

Similar questions