Math, asked by Sriwatsava, 9 months ago

Find the LCM and HCF of p and q where p=a3b
2 and q= b3a
2​

Answers

Answered by amitkumar44481
2

AnsWer :

  • HCF = ( a² , b² )
  • LCM = ( a³ , b³ )

Solution :

We have,

  • P = a³ b²
  • q = a² b³

# For H.C.F ( Highest Common factor )

 \tt (p , q ) =  {a}^{3}  {b}^{2}  \: , \:   {a}^{2}  {b}^{3}

 \tt p \leadsto a \times a \times a \times b \times b.

 \tt q \leadsto a \times a \times b \times b \times b.

Taking Common factor in both ( p , q )

 \tt \dagger \:  \:  \:  \:  \:H.C.F (p , q) \leadsto  {a}^{2}  \:  {b}^{2} .

\rule{120}1

# For L.C.M ( Least common multiple )

 \tt (p \: q ) =  {a}^{3}  {b}^{2} \: ,\:  {a}^{2}  {b}^{3}

 \tt p \leadsto a \times a \times a \times b \times b.

 \tt q \leadsto a \times a \times b \times b \times b.

Taking highest degree in both ( p , q )

 \tt \dagger \:  \:  \:  \:  \: L.C.M  (p , q) \leadsto  {a}^{3}  \:  {b}^{3} .

Therefore, HCF of given value be a² b² and LCM of given value be a³ b³.


Swarup1998: You might want to take a look again in your answer.
Answered by Swarup1998
1

LCM and HCF

To find LCM and HCF, simply express the given terms as a product \mathsf{a} and \mathsf{b}.

Here, \mathsf{p=a^{3}b^{2}}

\Rightarrow \mathsf{p=a\times a\times a\times b\times b}

and \mathsf{q=b^{3}a^{2}}

\Rightarrow \mathsf{q=b\times b\times b\times a\times a}

Finding HCF.

We see that, in \mathsf{p} and \mathsf{q}, there are two \mathsf{a} and two \mathsf{b} are common.

Thus HCF of \mathsf{p,\:q=a\times a\times b\times b}

\quad\quad=\mathsf{a^{2}b^{2}}

\Rightarrow \boxed{\mathsf{HCF(p,\:q)=a^{2}b^{2}}}

Finding LCM.

We see that, together in \mathsf{p} and \mathsf{q}, there are maximum number of three \mathsf{a} and three \mathsf{b}.

Thus LCM of \mathsf{p,\:q=a\times a\times a\times b\times b\times b}

\quad\quad=\mathsf{a^{3}b^{3}}

\Rightarrow \boxed{\mathsf{LCM(p,\:q)=a^{3}b^{3}}}

Similar questions