Math, asked by tushar224431, 19 days ago

find the length of a diagonal of a rectangle whose length and breadth are 16 cm and 12 CM respectively. Explain.​

Answers

Answered by ItzBrainlyLords
3

 \large \sf \purple{hi \:  \: friend : )} \\

 \large \sf \star \underline{ \:  \red{ solution : }} \\

Given :

  • Length = 16cm
  • Breadth = 12cm

To Find :

  • Length of diagonal

Construction :

  • Rectangle ABCD
  • Refer to attached picture

 \large \star \sf \: in \:  \triangle \: bcd :  \\

We know,

  • angles of rectangle = 90°

Therefore, Triangle BCD is a

  • Right angled triangle

 \large \star \sf \: \underline{ pythagores \:  \: theorem : } \\

 \large \looparrowright \pink{ \sf \:  {h}^{2} =  {b}^{2} +  {p}^{2}   } \\

  • h = Hypotenuse (diagonal)
  • b = base
  • p = perpendicular

 \\  \large \implies \tt \:  {h}^{2}  =  {16}^{2}  +  {12}^{2}  \\ \\  \large \implies \tt \:  {h}^{2}  =  256 + 144 \\   \\  \large \implies \tt \:  {h}^{2}  =  400\\   \\  \large \implies \tt \:  {h}^{}  =   \sqrt{ 400} \\  \\  \large \therefore \green{ \sf \: h = 20} \\

Diagonal = 20cm

Attachments:
Answered by Anonymous
6

Answer:

Given :

  • ➝ Lenght of rectangle = 16 cm
  • ➝ Breadth of rectangle = 12 cm

\begin{gathered}\end{gathered}

To Find :

  • ➝ Lenght of diagonal

\begin{gathered}\end{gathered}

Using Formula :

\longrightarrow{\underline{\boxed{\sf{d =  \sqrt{{(l)}^{2} + {(w)}^{2}}}}}}

  • ➝ d = diognal
  • ➝ l = length
  • ➝ w = width

\begin{gathered}\end{gathered}

Solution :

Finding the diognal of rectangle by substituting the values in the formula :

\begin{gathered} \qquad\implies{\sf{d =  \sqrt{{(l)}^{2} + {(w)}^{2}}}} \\  \\ \qquad\implies{\sf{d =  \sqrt{{(16)}^{2} + {(12)}^{2}}}} \\  \\ \qquad\implies{\sf{d =  \sqrt{{(16 \times 16)} + {(12 \times 12)}}}} \\  \\ \quad\implies{\sf{d =  \sqrt{{(256)} + {(144)}}}} \\  \\ \quad\implies{\sf{d =  \sqrt{{256} + {144}}}}  \\  \\ \quad\implies{\sf{d =  \sqrt{{256} + {144}}}}  \\  \\ \quad\implies{\sf{d =  \sqrt{400}}} \\  \\ \quad\implies{\sf{d =  20 \: cm}} \\  \\  \quad\bigstar \: {\underline{\boxed{\sf{\pink{Diagonal =  20 \: cm}}}}} \end{gathered}

  • Hence, the diagonal of rectangle is 20 cm.

\begin{gathered}\end{gathered}

Learn More :

\begin{gathered}\begin{gathered} \boxed{\begin{array}{l}\\ \large\dag\quad\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star \: \: \sf Circle = \pi r^2 \\ \\ \star \: \; \sf Square=(side)^2\\ \\ \star\; \; \sf Rectangle=Length\times Breadth \\\\ \star \: \: \sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \: \: \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \: \: \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star \: \: \sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star \: \: \sf Parallelogram =Breadth\times Height\\\\ \star \: \: \sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star \: \: \sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

\rule{220pt}{3.5pt}

Similar questions