Math, asked by aayushbhalotia, 10 months ago

Find the length of each side of square whose area is equal to the area of rectangle of land 13.6 meter and bread three point for meter​

Answers

Answered by mddilshad11ab
94

\sf\large\underline{Correct\: Question:}

Find the length of each side of square whose area is equal to the area of rectangle of length 13.6m and breadth 3.4m.

\sf\large\underline{Given:}

  • \rm{Length\:_{(rectangle)}=13.6m}
  • \rm{Breadth\:_{(rectangle)}=3.4m}
  • \rm{Area\:_{(rectangle)}=Area\:_{(square)}}

\sf\large\underline{To\: Find:}

  • \rm{Side\:_{square}=?}

\sf\large\underline{Solution:}

  • At first calculate the area of rectangle than calculate the side of square here,]

\rm{\implies Area\:_{(rectangle)}=Length\times\: Breadth}

\rm{\implies Area\:_{(rectangle)}=13.6\times\:3.4}

\rm{\implies Area\:_{(rectangle)}=46.24\:m^2}

  • Now calculate the side of square here]

\rm{\implies Area\:_{(square)}=Area\:_{(rectangle)}}

\rm{\implies Area\:_{(square)}=S^2}

\rm{\implies S^2=46.24}

\rm{\implies S=\sqrt{46.24}}

\rm{\implies S=6.8m}

\sf\large{Hence,}

\rm{\implies Side\:_{(square)}=6.8m}

\sf\large\underline{Some\: related\: formula:}

\tt{\implies Perimeter\:_{(rectangle)}=2(Length+Breadth)}

\tt{\implies Perimeter\:_{(square)}=4\times\:side}

\tt{\implies Diagonal\:_{(square)}=\sqrt{2}\:a}

\tt{\implies Diagonal\:_{(rectangle)}=\sqrt{P^2+b^2}}

Similar questions