Math, asked by zozo5171, 11 months ago

. Find the length of edge of a cube with following
volume:
(i) 343 cm3 (ii) 729 cm
(iii) 1728 cm
(iv) 8000 cm​

Answers

Answered by Anonymous
51

\large{\mathcal{\underline{\underline{\red{QUESTION:}}}}}

Find the length of edge of a cube with following  volume:

  • 343 cm³
  • 729 cm³
  • 1728 cm³
  • 8000 cm³

\large{\mathcal{\underline{\underline{\red{SOLUTION:}}}}}

\sf 1).Volume\;of\;cube=343\;cm^{3}\\ \\ {\underline{\bf We\;know\;that,}}\\ \\ \longrightarrow \sf Volume\;of\;cube=a^{3}\\ \\ {\underline{\bf Now,\;put\;the\;values,}}\\ \\ \longrightarrow \sf 343 =a^{3}\\ \\ \longrightarrow {\boxed{\sf a=7\;cm}}\\ \\ \rule{200}{2}

\sf 2).Volume\;of\;cube=729\;cm^{3}\\ \\ {\underline{\bf We\;know\;that,}}\\ \\ \longrightarrow \sf Volume\;of\;cube=a^{3}\\ \\ {\underline{\bf Now,\;put\;the\;values,}}\\ \\ \longrightarrow \sf 729 =a^{3}\\ \\ \longrightarrow {\boxed{\sf a=9\;cm}}\\ \\ \rule{200}{2}

\sf 3).Volume\;of\;cube=1728\;cm^{3}\\ \\ {\underline{\bf We\;know\;that,}}\\ \\ \longrightarrow \sf Volume\;of\;cube=a^{3}\\ \\ {\underline{\bf Now,\;put\;the\;values,}}\\ \\ \longrightarrow \sf 1728 =a^{3}\\ \\ \longrightarrow {\boxed{\sf a=12\;cm}}\\ \\ \rule{200}{2}

\sf 4).Volume\;of\;cube=8000\;cm^{3}\\ \\ {\underline{\bf We\;know\;that,}}\\ \\ \longrightarrow \sf Volume\;of\;cube=a^{3}\\ \\ {\underline{\bf Now,\;put\;the\;values,}}\\ \\ \longrightarrow \sf 8000 =a^{3}\\ \\ \longrightarrow {\boxed{\sf a=20\;cm}}

Answered by Anonymous
67

Question :

Find the length of edge of a cube with following volume:

(i) 343 \: cm^3 \\ (ii)729 \: cm^3 \\(iii)1728 \: cm^3 \\ (iv)8000 \: cm^3

Solution :

\boxed{\purple{Edge\:of\:cube=\sqrt[3]{Volume}}}

\rule {193}{1}

(i) 343 \: cm^3

 \implies Edge\:of\:the \: cube=\sqrt[3]{Volume} \\  \implies Edge\:of\:the \: cube=\sqrt[3]{343} \: cm \\ \implies Edge\:of\:the \: cube=\sqrt[3]{7 \times 7 \times 7}  \: cm \\ \implies Edge\:of\:the \: cube = 7 \: cm

\boxed{\green{\therefore{The \:length \:of \:the\: edge\:of\:the\:cube \:is\:7\:cm.}}}

\rule {193}{1}

(ii) 729\: cm^3

 \implies Edge\:of\:the \: cube=\sqrt[3]{Volume} \\  \implies Edge\:of\:the \: cube=\sqrt[3]{729} \: cm \\ \implies Edge\:of\:the \: cube=\sqrt[3]{9 \times 9 \times 9}  \: cm \\ \implies Edge\:of\:the \: cube = 9 \: cm

\boxed{\green{\therefore{The \:length \:of \:the\: edge\:of\:the\:cube \:is\:9\:cm.}}}

\rule {193}{1}

(iii) 1728\: cm^3

 \implies Edge\:of\:the \: cube=\sqrt[3]{Volume} \\  \implies Edge\:of\:the \: cube=\sqrt[3]{1728} \: cm \\ \implies Edge\:of\:the \: cube=\sqrt[3]{12\times 12 \times 12}  \: cm \\ \implies Edge\:of\:the \: cube = 12 \: cm

\boxed{\green{\therefore{The \:length \:of \:the\: edge\:of\:the\:cube \:is\:12\:cm.}}}

\rule {193}{1}

(iv)8000 \: cm^3

 \implies Edge\:of\:the \: cube=\sqrt[3]{Volume} \\  \implies Edge\:of\:the \: cube=\sqrt[3]{8000} \: cm \\ \implies Edge\:of\:the \: cube=\sqrt[3]{20 \times 20\times 20}  \: cm \\ \implies Edge\:of\:the \: cube = 20 \: cm

\boxed{\green{\therefore{The \:length \:of \:the\: edge\:of\:the\:cube \:is\:20\:cm.}}}

\rule {193}{1}

Similar questions