Math, asked by NITESH761, 4 days ago

Find the length of EF.​

Attachments:

Answers

Answered by user0888
21

\Huge\text{${\overline{EF}=(10\sqrt{2}-5\sqrt{6}) \text{ cm}}$}

\huge\text{\underline{\underline{Topic}}}

\Large\text{[Trigonometry]}

\large\text{$\rightarrow$ Double angle formula}

\text{$\bullet\ \boxed{\sin(2\theta)=2\sin\theta\cos\theta}$ \dots [Sine]}

\text{$\bullet\ \boxed{\cos(2\theta)=\cos^{2}\theta-\sin^{2}\theta}$ \dots[Cosine]}

\text{$\bullet\ \boxed{\tan(2\theta)=\dfrac{2\tan\theta}{1-\tan^{2}\theta}}$ \dots[Tangent]}

\huge\text{\underline{\underline{Explanation}}}

Let the midpoint on segment BC be M.

Since \triangle BCD is an equilateral right triangle, -

\text{$\cdots\longrightarrow\angle BCD=45^{\circ}$}

Since \text{$\tan\angle CDM=\dfrac{1}{\sqrt{3}}$}, -

\text{$\cdots\longrightarrow\angle CDM=30^{\circ}$}

We know that -

\text{$\bullet\ \angle BDC=45^{\circ}$}

\text{$\bullet\ \angle CDM=30^{\circ}$}

\text{$\cdots\longrightarrow\angle BDM=\angle BDC-\angle CDM=15^{\circ}$}

Since the two diagonal of square cross perpendicularly, -

\text{$\cdots\longrightarrow\angle E=90^{\circ}$}

We know that -

\text{$\bullet\ \overline{DE}=5\sqrt{2}$}

\text{$\bullet\ \angle E=90^{\circ}$}

\text{$\bullet\ \angle EDF=15^{\circ}$}

\text{$\cdots\longrightarrow\overline{EF}=5\sqrt{2}\tan15^{\circ}$}

By double angle formula for tangent, -

\text{$\cdots\longrightarrow\tan30^{\circ}=\dfrac{2\tan15^{\circ}}{1-\tan15^{\circ}}$}

\bold{Let}\text{ $\tan15^{\circ}$ }\bold{be}\text{ $t$.}

\text{$\cdots\longrightarrow\dfrac{1}{\sqrt{3}}=\dfrac{2t}{1-t^{2}}$}

\text{$\cdots\longrightarrow1-t^{2}=2\sqrt{3}t$}

\text{$\cdots\longrightarrow t^{2}+2\sqrt{3}t-1=0$}

\text{$\cdots\longrightarrow t=-\sqrt{3}\pm2,\ \boxed{t>0}$}

\text{$\cdots\longrightarrow\tan15^{\circ}=2-\sqrt{3}$}

Now, finally, we know that -

\text{$\bullet\ \overline{EF}=5\sqrt{2}\tan15^{\circ}$}

\text{$\bullet\ \tan15^{\circ}=2-\sqrt{3}$}

\text{$\cdots\longrightarrow\overline{EF}=10\sqrt{2}-5\sqrt{6}$ (cm)}

\huge\text{\underline{\underline{Final answer}}}

\text{$\cdots\longrightarrow\boxed{\overline{EF}=(10\sqrt{2}-5\sqrt{6}) \text{ cm}}$}

Similar questions