find the length of the arc of a circle of radius 25 CM subtending a central angle of 15 degree
Answers
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)
# ItzYourDreamGirl
Answer:
Length of Arc = (∅/360) x 2πr
∅ = L x 360/2πr
= 15 x 360/(2π x 25) degrees
= 15 x 360 x 7/(2 x 22 x 25) degrees
= 34.36°
= 34.36 x π/180 ≈ 0.6 radians
:-)