Math, asked by Anonymous, 6 hours ago

Find the length of the hypotenuse of an isosceles triangle with area 72cm2.
please help.... ​

Answers

Answered by DeeznutzUwU
3

       \underline{\bold{Solution:}}

       \text{It is given that a right angled isosceles triangle has an area of 72 cm}^{2}

       \text{We know that, Area of triangle} = \dfrac12(\text{base})(\text{height)}

       \text{Since in a right angled isoscleles triangle base = height}

\implies \text{Area of the triangle} = \dfrac12(\text{base)}^{2}

\implies 72 = \dfrac12(\text{base})^{2}

       \text{Transposing 2 to L.H.S}

\implies 72(2) = (\text{base})^{2}

       \text{Simplifying...}

\implies 144 = (\text{base})^{2}

       \text{Rooting both sides}

\implies \sqrt{144} = \text{base}

       \text{Simplifying...}

\implies +12,-12 = \text{base}

       \text{Since, length cannot be negative}

\implies \text{12 cm = base = height}

       \text{Applying Pythagorus theorem}

\implies (\text{base})^{2} + (\text{height})^{2} = (\text{hypotenuse})^{2}

       \text{Substituting the values}

\implies (12)^{2} + (12)^{2} = (\text{hypotenuse})^{2}

       \text{Simplifying...}

\implies 144 + 144 = (\text{hypotenuse})^{2}

       \text{Simplifying...}

\implies 288 = (\text{hypotenuse})^{2}

       \text{Rooting both sides}

\implies \sqrt{288} = \text{hypotenuse}

       \text{Simplifying...}

\implies +12\sqrt2,-12\sqrt2 = \text{hypotenuse}

       \text{Since, length cannot be negative}

\implies \boxed{12\sqrt{2} \text{ cm}= \text{hypotenuse}}

Similar questions