Math, asked by Krishnaramesh, 5 months ago

Find the length of the medians of the triangle whose vertices are (1,-1), (0,-4) and (-5,3).

Answers

Answered by Seafairy
198

{\blue{\text{Length of medians are :}}}

AD = \frac{\sqrt{130}}{2}

BE = \sqrt{13}

CF = \frac{\sqrt{130}}{2}

{\large{\underline{\underline{\text{\red{Given :}}}}}}

{\text{Vertices of triangle}}\:\: (1,-1)(0,4)(-5,3)

{\large{\underline{\underline{\text{\red{To Find :}}}}}}

{\text{Length of medians of the triangle}}

{\large{\underline{\underline{\text{\red{Solution :}}}}}}

Let the vertices of the triangle ABC be A(1,-1),B(0,4) and C(-5,3).

Let D,E,F are the midpoints of the sides BC,CA,AB respectively then AD,BE,CF are the medians.

\setlength{\unitlength}{1cm}\begin{picture}(20,15)(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(0,0)(0,0)(2,3)\qbezier(4,0)(4,0)(2,3)\qbezier(0,0)(0,0)(3,1.5)\qbezier(2,0)(2,0)(2,3) \qbezier(4,0)(4,0)(1,1.5)\put(-0.2,-0.3){\bf B(0,4)}\put(2,-0.3){\bf D}\put(4,-0.3){\bf C(-5,3)}\put(3.2,1.5){\bf E}\put(2,3.2){\bf A(1,-1)}\put(0.7,1.5){\bf F}\end{picture}

{\purple{\text{Mid - Point formula}} = ( \frac{x_2-x_1}{2},\frac{y_2-y_1}{2})}

\bigstar\: {\pink{\text{D is the midpoint of BC}}}

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(0, 0)(0,0)(4,0)\put(-0.5,-0.3){\bf B(0,4)}\put(2,-0.3){\bf D}\put(4,-0.3){\bf C(-5,3)}\end{picture}

\therefore D = ( \frac{0-5}{2} , \frac{4+3}{2})

{\green{D = (\frac{-5}{2},\frac{7}{2})}}

\bigstar\:{\pink{\text{E is the midpoint of CA}}}

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(0, 0)(0,0)(4,0)\put(-0.5,-0.3){\bf C(-5,3)}\put(2,-0.3){\bf E}\put(4,-0.3){\bf A(-1,1)}\end{picture}

\therefore E = (\frac{-5+1}{2},\frac{3-1}{2}) \implies ( \frac{-4}{2},\frac{2}{2})

{\green{E = (-2,1)}}

\bigstar\:{\pink{\text{F is the midpoint of AB}}}

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(0, 0)(0,0)(4,0)\put(-0.5,-0.3){\bf A(1,-1)}\put(2,-0.3){\bf F}\put(4,-0.3){\bf B(0,4)}\end{picture}

\therefore F = (\frac{1+0}{2},\frac{3-1}{2})

\green{F= (\frac{1}{2},\frac{3}{2})}

{\purple{\text{Distance formula}}=\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}}

{\text{\pink{Length of the median AD}}}

A (1,-1) \:\:\: D(\frac{-5}{2},\frac{7}{2})

\implies \sqrt{(\frac{-5}{2}-1)^2 + (\frac{7}{2}+1)^2}

\implies \sqrt {(\frac{-5-2}{2})^2+(\frac{7+2}{2})^2}

\implies \sqrt{(\frac{-7}{2})^2+(\frac{9}{2})^2}

\implies \sqrt{(\frac{49}{2}+\frac{81}{2})}

\boxed{AD= \sqrt{\frac{130}{4}}}

{\text{\pink{Length of median BE}}}

B(0,4),E(2,1)

\implies  \sqrt{(2-0)^2+(1-4)^2}

\implies \sqrt{4+(-3)^2}

\implies \sqrt{4+9}

{\boxed{BE = \sqrt{13}}}

{\text{\pink{Length of median CF}}}

c(-5,3),F(\frac{1}{2},\frac{3}{2})

\implies \sqrt{(\frac{1}{2}+5)^2+(\frac{3}{2}-3)^2}

\implies \sqrt{(\frac{1+10}{2})^2+(\frac{3-6}{2})^2}

\implies \sqrt{(\frac{11}{2})^2+(\frac{-3}{2})^2}

\implies \sqrt{\frac{121}{4}+(\frac{3}{2})^2}

\implies \sqrt {\frac{121}{4}+\frac{9}{4}}

{\boxed{CF=\frac{\sqrt{130}}{2}}}

( Kindly visit the answer in web (Brainly.in) To view the display of triangle and sides )


Krishnaramesh: tha ks
Seafairy: welcome :)
Answered by Anonymous
3

{\blue{\text{Length of medians are :}}}

AD = \frac{\sqrt{130}}{2}

BE = \sqrt{13}

CF = \frac{\sqrt{130}}{2}

{\large{\underline{\underline{\text{\red{Given :}}}}}}

{\text{Vertices of triangle}}\:\: (1,-1)(0,4)(-5,3)

{\large{\underline{\underline{\text{\red{To Find :}}}}}}

{\text{Length of medians of the triangle}}

{\large{\underline{\underline{\text{\red{Solution :}}}}}}

Let the vertices of the triangle ABC be A(1,-1),B(0,4) and C(-5,3).

Let D,E,F are the midpoints of the sides BC,CA,AB respectively then AD,BE,CF are the medians.

\setlength{\unitlength}{1cm}\begin{picture}(20,15)(0,0)\thicklines\qbezier(0,0)(0,0)(4,0)\qbezier(0,0)(0,0)(2,3)\qbezier(4,0)(4,0)(2,3)\qbezier(0,0)(0,0)(3,1.5)\qbezier(2,0)(2,0)(2,3) \qbezier(4,0)(4,0)(1,1.5)\put(-0.2,-0.3){\bf B(0,4)}\put(2,-0.3){\bf D}\put(4,-0.3){\bf C(-5,3)}\put(3.2,1.5){\bf E}\put(2,3.2){\bf A(1,-1)}\put(0.7,1.5){\bf F}\end{picture}

{\purple{\text{Mid - Point formula}} = ( \frac{x_2-x_1}{2},\frac{y_2-y_1}{2})}

\bigstar\: {\pink{\text{D is the midpoint of BC}}}

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(0, 0)(0,0)(4,0)\put(-0.5,-0.3){\bf B(0,4)}\put(2,-0.3){\bf D}\put(4,-0.3){\bf C(-5,3)}\end{picture}

\therefore D = ( \frac{0-5}{2} , \frac{4+3}{2})

{\green{D = (\frac{-5}{2},\frac{7}{2})}}

\bigstar\:{\pink{\text{E is the midpoint of CA}}}

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(0, 0)(0,0)(4,0)\put(-0.5,-0.3){\bf C(-5,3)}\put(2,-0.3){\bf E}\put(4,-0.3){\bf A(-1,1)}\end{picture}

\therefore E = (\frac{-5+1}{2},\frac{3-1}{2}) \implies ( \frac{-4}{2},\frac{2}{2})

{\green{E = (-2,1)}}

\bigstar\:{\pink{\text{F is the midpoint of AB}}}

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(0, 0)(0,0)(4,0)\put(-0.5,-0.3){\bf A(1,-1)}\put(2,-0.3){\bf F}\put(4,-0.3){\bf B(0,4)}\end{picture}

\therefore F = (\frac{1+0}{2},\frac{3-1}{2})

\green{F= (\frac{1}{2},\frac{3}{2})}

{\purple{\text{Distance formula}}=\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}}

{\text{\pink{Length of the median AD}}}

A (1,-1) \:\:\: D(\frac{-5}{2},\frac{7}{2})

\implies \sqrt{(\frac{-5}{2}-1)^2 + (\frac{7}{2}+1)^2}

\implies \sqrt {(\frac{-5-2}{2})^2+(\frac{7+2}{2})^2}

\implies \sqrt{(\frac{-7}{2})^2+(\frac{9}{2})^2}

\implies \sqrt{(\frac{49}{2}+\frac{81}{2})}

\boxed{AD= \sqrt{\frac{130}{4}}}

{\text{\pink{Length of median BE}}}

B(0,4),E(2,1)

\implies  \sqrt{(2-0)^2+(1-4)^2}

\implies \sqrt{4+(-3)^2}

\implies \sqrt{4+9}

{\boxed{BE = \sqrt{13}}}

{\text{\pink{Length of median CF}}}

c(-5,3),F(\frac{1}{2},\frac{3}{2})

\implies \sqrt{(\frac{1}{2}+5)^2+(\frac{3}{2}-3)^2}

\implies \sqrt{(\frac{1+10}{2})^2+(\frac{3-6}{2})^2}

\implies \sqrt{(\frac{11}{2})^2+(\frac{-3}{2})^2}

\implies \sqrt{\frac{121}{4}+(\frac{3}{2})^2}

\implies \sqrt {\frac{121}{4}+\frac{9}{4}}

{\boxed{CF=\frac{\sqrt{130}}{2}}}

( Kindly visit the answer in web (Brainly.in) To view the display of triangle and sides )

Similar questions