Math, asked by shriyapurohit4181, 1 year ago

Find the length of the perpendicular from the origin to the line 4x + 3y - 2 = 0.

Answers

Answered by ABHAYADASH
9
LENGTH OF THE PRENDICULAR (NORMAL) P FROM ORGIN TOO THE LINE EXAMPLE 2 FIND THE EQUATIONN OF THE LINE WHEN THE LENGHT OF THE LINE 4X- 3Y -10 =0 THE ANSWRR THIS END
Answered by amitnrw
24

Answer:

2/5

Step-by-step explanation:

Find the length of the perpendicular from the origin to the line 4x + 3y - 2 = 0.

Slope of line 4x + 3y - 2 = 0

3y =  -4x + 2

=> y = -4x/3 + 2/3

Slope of line = -4/3

Slope of line perpendicular to 4x + 3y - 2 = 0 = m

m(-4/3)  = -1

=> m = 3/4

y = 3x/4 + c

it passes through origin

=> 0 = 0 + c

=> c =0

y = 3x/4

=> 4y = 3x

=> 3x -4y = 0

Intersection point of Lines 4x + 3y - 2 = 0  & 3x -4y = 0

4Eq1 +  3eq 2

= 25x - 8 = 0

=> x = 8/25

3(8/25) = 4y

=> y = 6/25

Distance from origin ( Length of perpendicular)

√((8/25)² + (6/25)²)

=  10/25

= 2/5

Similar questions
Science, 7 months ago