Math, asked by Anonymous, 5 months ago

find the length of the side of a square whose area is equal to the area of a rectangle having a length and breadth of 2.5 m and 0.9 m respectively​

Answers

Answered by Anonymous
55

Given:

Length of rectangle, l = 2.5 m

Breadth of rectangle, b = 0.9 m

\sf Area_{\;(rectangle)} = Area_{\;(square)}

⠀⠀

To find:

Length of side of square?

⠀⠀

Solution:

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Area_{\;(rectangle)} = length \times breadth}}}}\\ \\

\sf Here \begin{cases} & \sf{Length,\;l = \bf{2.5\;m}}  \\ & \sf{Breadth,\;b = \bf{0.9\;m}}  \end{cases}\\ \\

:\implies\sf Area_{\;(rectangle)} = 2.5 \times 0.9\\ \\ :\implies{\underline{\boxed{\frak{\purple{Area_{\;(rectangle)} = 2.25\;m^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Thus,\;Area\;of\;rectangle\;is\; \bf{2.25\;m^2}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

:\implies\sf Area_{\;(rectangle)} = Area_{\;(square)}\\ \\

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Area_{\;(square)} = side \times side}}}}\\ \\

Therefore,

⠀⠀

:\implies\sf Side \times Side = 2.25\\ \\

:\implies\sf (side)^2 = 2.25\\ \\

:\implies\sf \sqrt{(side)^2} = \sqrt{2.25}\\ \\

:\implies{\underline{\boxed{\frak{\purple{Side = 2.25\;m}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;Side\;of\;square\;is\; \bf{1.5\;m}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\bigstar \: \bf\:More\:to\:know\:\bigstar}}} \\  \\

Perimeter of Rectangle = 2(length + breadth)

Perimeter of square = 4 × side

Diagonal of square = √2 × side

Diagonal of rectangle = √(length)² + (breadth)²

Answered by BʀᴀɪɴʟʏAʙCᴅ
4

\huge\mathcal{\mid{\mid{\underline{\green{Good\: Afternoon\:}}}{\mid{\mid}}}} \\

Qᴜᴇsᴛɪᴏɴ ;-

✔️ Find the length of the side of a square whose area is equal to the area of a rectangle having a length and breadth of 2.5 m and 0.9 m respectively.

\huge{\orange{\boxed{\fcolorbox{lime}{indigo}{\color{aqua}ANSWER}}}} \\

\Large\bf\pink{GiVeN,} \\

  • \bf\red{Length\:of\: Rectangle} = 2.5 cm

  • \bf\red{Breadth\:of\: Rectangle} = 0.9 cm

\Large\bf\blue{We\: know\: that,} \\

\red\bigstar\:\:\bf\green{Area\:of\: Rectangle\:=\: Length\:\times\: Breadth} \\

\bold\longmapsto\:\rm{Area\:of\: Rectangle\:=\:2.5\:\times\:{0.9}} \\

\bold\longmapsto\:\bf\orange{Area\:of\: Rectangle\:=\:2.25\:cm^2} \\

\bf\gray{According\:to\:the\: question,} \\

\pink\bigstar\:\:\bf{\color{indigo}{Area\:of\: Square\:=\: Area\:of\: Rectangle}} \\

\bold\longmapsto\:\:\rm{Area\:of\: Square\:=\:2.25\:cm^2} \\

\bold\longmapsto\:\:\rm{Side\:\times\:{Side}\:=\:2.25\:cm^2} \\

\bold\longmapsto\:\:\rm{(Side)^2\:=\:2.25\:cm^2} \\

\bold\longmapsto\:\:\rm{Side\:=\:\sqrt{2.25\:cm^2}} \\

\bold\longmapsto\:\:\bf\green{Side\:=\:1.5\:cm} \\

\Large\bold\therefore The length of the side of a square is 1.5 cm.

Similar questions