Math, asked by bindiaagrawal12345, 3 months ago

find the length of the the daigonal of a rectangle whose sides are 30 cm and 40 cm​

Answers

Answered by nandanagarg08
1

Answer:

Length=40 cm

Breadth=30 cm

Area= length×breadth

= 40cm×30cm

=1200 cm^2

We have to make a diagonal from one end to another.

It forms a triangle.

=1/2×b×h

=1/2×40×30

=600 cm

Answered by BrainlyRish
5

Given : Length and Breadth of Rectangle is 30 cm and 40 cm respectively.

Need To Find : Length of Diagonal of Rectangle.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Formula for finding Diagonal of Rectangle is given by :

\dag\frak{\underline{ As,\:We\:Know\:That\:,}}\\

⠀⠀⠀⠀⠀ \underline {\boxed {\sf{ Diagonal _{(Rectangle)} = \sqrt {l^{2} + b^{2} } .}}}\\

⠀⠀⠀⠀⠀Here l is the Length of Rectangle in cm and b is the Breadth of Rectangle in cm .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀ :\implies  \sf{ Diagonal _{(Rectangle)} = \sqrt {30^{2} + 40^{2} }}\\

⠀⠀⠀⠀⠀ :\implies  \sf{ Diagonal _{(Rectangle)} = \sqrt {900 + 40^{2} }}\\

⠀⠀⠀⠀⠀ :\implies  \sf{ Diagonal _{(Rectangle)} = \sqrt {900 + 1600 }}\\

⠀⠀⠀⠀⠀ :\implies  \sf{ Diagonal _{(Rectangle)} = \sqrt {2,500 }}\\

As, We know that :

  • \star\sqrt {2,500}= 50

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  Diagonal _{(Rectangle)} = 50\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { Hence,\; Diagonal \:of\:Rectangle \:is\:50\: cm}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

More To Know :

\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions