Math, asked by yuvikamd18, 1 day ago

find the length of the unknown sides in following right angled triangle using Pythagoras property x, 15cm, 12cm​

Attachments:

Answers

Answered by shallkumari29march19
3

\huge\frak{\colorbox{orange}{ \red{\dag \:Answer \dag}}}

9 cm.

\large\bold\color{tan}{\underbrace{Explanation}:-}

Pythagoras theorem is :-

 \small  \color{cream}{   { ( \red { base}) }^{2} +  {( \red{height})}^{2}  =  {( \red{hypotenuse})}^{2}   }

But, here we have to find the height :-

 \tt \small =  >{(height)}^{2}  = {(hypotenuse)}^{2} - {(base)}^{2}

Applying all the values :-

 =  >  {(x)}^{2}  =  {(15)}^{2}  -  {(12)}^{2}

 =  >  {x}^{2}  = 225 - 144

 =  >  {x}^{2}  = 81

 =  > x =  \sqrt{81}  = 9 \: cm

So, length of the unknown side in this right angled triangle 9 cm.

Answered by Anonymous
20

Given :

  • Base = 12 cm
  • Hypotenuse = 15 cm

 \\ \\

To Find :

  • Perpendicular = x = ?

 \\ {\qquad{\rule{200pt}{2pt}}}

SolutioN :

 \\ \\

Formula Used :

  • Hypotenuse² = Base² + Perpendicular²

 \\ \\

Calculating the Value of x :

 ➺ \qquad \; Hypotenuse² = Base² + Perpendicular²

 \\ ➺ \qquad \; 15² = 12² + x²

 \\ ➺ \qquad \; 225 = 144 + x²

 \\ ➺ \qquad \; 225 - 144 = x²

 \\ ➺ \qquad \; 81 = x²

 \\ ➺ \qquad \; √81 = x

 \\ ➺ \qquad \; {\pmb{\purple{\underline{\underline{\frak{ x = 9 \; cm }}}}}}

 \\ \\

Therefore :

Value of x is 9 cm .

 \\ {\qquad{\rule{200pt}{2pt}}}

Similar questions