Math, asked by gausay80, 11 months ago

Find the length of transverse axis, length of
conjugate axis, the eccentricity, the co-ordi-
nates of foci, equations of directrices and the
length of latus rectum of the hyperbola.
x² ÷25 - y^2 = 1

Answers

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Length\:of\:transverse\:axis=10\:units}}}\\

\green{\tt{\therefore{Length\:of\:conjugate\:axis=2\:units}}}\\

\green{\tt{\therefore{Foci=(\pm\sqrt{30},0)}}}\\

\green{\tt{\therefore{Latus\:rectum(LL')=0.4\:units}}}

\green{\tt{\therefore{Eqn\:of\:directrix=x\pm5\sqrt{5}}}}

\green{\tt{\therefore{Eccentricity=\sqrt{\frac{6}{5}}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Eqn \: of \: hyperbola =  \frac{{x}^{2}}{25} -\frac{ {y}^{2} }{1}  = 1} \\  \\ \red {\underline \bold{to \: find: }}\\ \tt{:\implies Length\:of\:transverse\:axis=?}   \\ \\\tt{:\implies Length\:of\:conjugate\:axis=?}\\\\ \tt{:\implies Vertices=?}\\ \\ \tt{:\implies Foci=?}\\ \\ \tt {: \implies Length \: of \: latus \: rectum (LL')=?}\\\\ \tt{:\implies Eccentricity=?}\\\\ \tt{:\implies Eqn\:of\:directrix=?}

• According to given question :

 \tt{: \implies  \frac{ {x}^{2} }{25}  -  \frac{ {y}^{2} }{1}  = 1} \\   \\ \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  \frac{ {x}^{2} }{ {a}^{2} }   -  \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  = 25} \\   \\   \tt{\circ \:  {b}^{2}  = 1}

 \bold{as \: we \: know \: that} \\    \tt{: \implies length \: of \: transverse \: axis = 2a} \\  \\  \tt{: \implies length \: of \: transverse \: axis = 2 \times 5} \\  \\  \green{\tt{: \implies length \: of \: transverse \: axis = 10 \: units}} \\  \\  \bold{as \: we \: know \: that} \\    \tt{: \implies length \: of \:conjugate \: axis = 2b} \\  \\  \tt{: \implies length \: of \: conjugate \: axis = 2 \times 1} \\  \\  \green{\tt{: \implies length \: of \: conjugate \: axis = 2\: units}}

 \bold{As \: we \: know \: that} \\  \tt{ :   \implies  {b}^{2}   =  {a}^{2}({e}^{2} -1 )} \\  \\   \tt{: \implies1= 5( {e}^{2} -1)} \\   \\   \tt{: \implies  {e}^{2}  = 1 +  \frac{1}{5} } \\  \\   \tt{: \implies  {e}^{2}  =  \frac{6}{5} } \\  \\    \green{\tt{: \implies e =  \sqrt{\frac{6}{5} }}}\\   \\   \bold{As \: we \: know \: that} \\   \tt{: \implies foci = (\pm ae,0)} \\  \\   \green{\tt{: \implies Foci= (\pm \sqrt{30} ,0)}} \\  \\

 \bold{as \: we \: know \: that} \\  \tt{: \implies eqn \: of \: directrix = x =   \pm\frac{a}{e} } \\  \\   \tt{: \implies x =  \pm \frac{5}{ \frac{1}{ \sqrt{5} } } } \\  \\  \tt {:  \implies x =  \pm 5 \sqrt{5} } \\  \\   \green{\tt {:  \implies x  \pm5 \sqrt{5}  = 0}}

 \bold{As \: we \: know \: that}  \\    \tt{ :  \implies Latus \: rectum =  \frac{2 {b}^{2}  }{a} } \\   \\  \text{Putting \: given \: values} \\ \tt{ :  \implies Latus \: rectum =  \frac{2 \times 1}{5} } \\  \\  \green{\tt{ :  \implies Latus \: rectum =  0.4\:units}}

Similar questions