Math, asked by YashwiBishwas1918, 1 year ago

Find the local extrema and local extrema of the function f(x)=cos4x defined on (0,π÷2)

Answers

Answered by MaheswariS
5

\textbf{Given:}

\textsf{Function is}

\mathsf{f(x)=cos\,4x,\;on\,(0,\frac{\pi}{2})}

\textbf{To find:}

\textsf{Local extrema}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{f(x)=cos\,4x}

\mathsf{f'(x)=-4\,sin4x}

\mathsf{f''(x)=-16\,cos4x}

\mathsf{For\;critical\;numbers,\;f'(x)=0}

\implies\mathsf{-4\,sin4x=0}

\implies\mathsf{sin4x=0}

\implies\mathsf{4x=n\pi}

\implies\mathsf{x=\dfrac{n\pi}{4},\;n\in\,Z}

\implies\mathsf{x=\dfrac{\pi}{4}\,\in\,(0,\frac{\pi}{2})}

\mathsf{when\,x=\dfrac{\pi}{4},\;\;f''\left(\dfrac{\pi}{4}\right)=-16\,cos\pi=-16(-1)=16\,>\,0}

\therefore\mathsf{f(x)\;attains\;local\;minimum\;at\;x=\dfrac{\pi}{4}}

\mathsf{Local\;minimum\;value}

\mathsf{=f\left(\dfrac{\pi}{4}\right)}

\mathsf{=cos4\left(\dfrac{\pi}{4}\right)}

\mathsf{=cos\pi}

\mathsf{=-1}

\textbf{Answer:}

\textsf{Local minimum value is -1}

Similar questions