Math, asked by gauravborse70, 1 year ago

Find the local manimum f(x)=x3-3x

Answers

Answered by TPS
0

f(x) =  {x}^{3}  - 3x \\  \\ f'(x) =  \frac{d}{dx}  \bigg( {x}^{3}  - 3x \bigg)  = 3 {x}^{2} - 3 \\  \\ f'(x)=0\\ \\ \Rightarrow 3 {x}^{2} - 3  =0\\ \\ \Rightarrow 3 {x}^{2} =3\\ \\ \Rightarrow x^2 = 1\\ \\ \Rightarrow x =\pm 1\\ \\ \\ f"(x) =  \frac{d}{dx}  \bigg( 3 {x}^{2} - 3 \bigg)  = 6x\\  \\ f"(1)= 6 \times 1 = 6 > 0\\ \text{at x = 1, it attains minima}\\ minima=f(1)=1^3 - 3 \times 1 = 1-1 = 0\\ \\ f"(-1)= 6 \times (-1) = -6 < 0\\ \text{at x = -1, it attains maxima}\\  maxima=f(-1)=(-1)^3-3 \times (-1) = -1+3=2
Answered by BrainlyFlash156
22

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ĄNsWeR࿐}}}

f(x) =  {x}^{3}  - 3x \\  \\ f'(x) =  \frac{d}{dx}  \bigg( {x}^{3}  - 3x \bigg)  = 3 {x}^{2} - 3 \\  \\ f'(x)=0\\ \\ \Rightarrow 3 {x}^{2} - 3  =0\\ \\ \Rightarrow 3 {x}^{2} =3\\ \\ \Rightarrow x^2 = 1\\ \\ \Rightarrow x =\pm 1\\ \\ \\ f"(x) =  \frac{d}{dx}  \bigg( 3 {x}^{2} - 3 \bigg)  = 6x\\  \\ f"(1)= 6 \times 1 = 6 > 0\\ \text{at x = 1, it attains minima}\\ minima=f(1)=1^3 - 3 \times 1 = 1-1 = 0\\ \\ f"(-1)= 6 \times (-1) = -6 < 0\\ \text{at x = -1, it attains maxima}\\  maxima=f(-1)=(-1)^3-3 \times (-1) = -1+3=2

HOPE SO IT WILL HELP......

Similar questions