Math, asked by Akulbidada2863, 1 year ago

Find the local maximum or minimum of any of the function f(x) =sin4x+cos4x

Answers

Answered by Pitymys
1

Given the function  f(x)=\sin 4x+\cos 4x . This function can be rewritten as

 f(x)=\sqrt{2}(\sin 4x \frac{1}{\sqrt{2}}+\cos 4x \frac{1}{\sqrt{2}})  \\<br />f(x)=\sqrt{2}(\sin 4x \cos (45^o)+\cos 4x \sin (45^o))  \\<br />f(x)=\sqrt{2} \sin (4x+45^o) \\<br />

Now the maximum value of  f(x)=\sqrt{2} \sin (4x+45^o)  is  f(x)=\sqrt{2} and minimum value is  f(x)=-\sqrt{2} .

Maximum value occurs when   \sin (4x+45^o)=1 and minimum value occurs when   \sin (4x+45^o)=-1

Similar questions