Find the local minimum value of the function f(x) = sin⁴x + cos⁴x, 0 < x < π2
(a) 1√2
(b) 1/2
(c) √3/2
(d) 0
Answers
Answered by
0
Step-by-step explanation:
Let f(x)=cos
4
x+sin
4
x
=(cos
2
x)
2
+(sin
2
x)
2
=(cos
2
x+sin
2
x)
2
−2sin
2
xcos
2
x.................[a
2
+b
2
=(a+b)
2
−2ab]
=1−
2
(sin2x)
2
for max value of f(x),sin2x=0
f(x)=1−0=1
for min. value of f(x),sinx=1 or −1
f(x)=1−
2
1
=
2
1
Similar questions