Find the locus of the point of intersection of the tangents to the ellipse:
(a > b), if the difference of the eccentric angles of their points of contact is 2*α.
Ans:
[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}=sec^2 \alpha
[/tex]
Answers
Answered by
18
A point (x,y) on the ellipse is:
x = a cos t, y = b sin t,
t = eccentric angle at (x,y) on the ellipse. t = tan⁻¹ (ya /bx)
Tangent at (a cos t, b sin t):
y = m x +- sqrt(a^2 m^2 + b^2)
Or, x cos t /a + y sin t /b = 1, slope m = (-b/a) cot t ---(1)
Tangent at {a cos(t+2α), b sin(t+2α)}:
x cos(t+2α) /a + y sin(t+2α) /b = 1 --- (2)
Point of intersection of the two tangents:
x [cos(t+2α) - cos t] /a + y [sin(t+2α) - sin t] /b = 0
-(2 x/a) sin(t+α) sin α + (2 y/b) sin α cos(t+α) = 0
y = x (b/a) Tan (t +α)
Substitute for y in (1) to get :
x = a/[cos t + Tan(t +α) sin t] = a cos(t+α)/cos α -- (3)
y = b Sin (t +α) / cos α -- (4)
Eliminating t from (3) and (4),
x²/a² +y²/b² = sec² α
x = a cos t, y = b sin t,
t = eccentric angle at (x,y) on the ellipse. t = tan⁻¹ (ya /bx)
Tangent at (a cos t, b sin t):
y = m x +- sqrt(a^2 m^2 + b^2)
Or, x cos t /a + y sin t /b = 1, slope m = (-b/a) cot t ---(1)
Tangent at {a cos(t+2α), b sin(t+2α)}:
x cos(t+2α) /a + y sin(t+2α) /b = 1 --- (2)
Point of intersection of the two tangents:
x [cos(t+2α) - cos t] /a + y [sin(t+2α) - sin t] /b = 0
-(2 x/a) sin(t+α) sin α + (2 y/b) sin α cos(t+α) = 0
y = x (b/a) Tan (t +α)
Substitute for y in (1) to get :
x = a/[cos t + Tan(t +α) sin t] = a cos(t+α)/cos α -- (3)
y = b Sin (t +α) / cos α -- (4)
Eliminating t from (3) and (4),
x²/a² +y²/b² = sec² α
Similar questions
Computer Science,
8 months ago
Math,
8 months ago
Science,
8 months ago
India Languages,
1 year ago
Hindi,
1 year ago