Math, asked by jbnvprasad, 9 months ago

find the locus of the point p such that PA2+pb2=2c2 where A(a,0),B(-a,o) and 0<|a|<|c|​

Answers

Answered by MaheswariS
26

\textbf{Given:}

\text{P is the moving point and}

PA^2+PB^2=2c^2

\textbf{To find:}

\text{The locus of P}

\textbf{Solution:}

\text{Let P(h,k) be the moving point}

PA=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

PA=\sqrt{(h-a)^2+(k-0)^2}

PA=\sqrt{(h-a)^2+k^2}

PB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

PB=\sqrt{(h+a)^2+(k-0)^2}

PB=\sqrt{(h+a)^2+k^2}

\text{Condition:}\;PA^2+PB^2=2c^2

\implies\,(h-a)^2+k^2+(h+a)^2+k^2=2c^2

\implies\,h^2+a^2-2ah+k^2+h^2+a^2+2ah+k^2=2c^2

\implies\,h^2+a^2+k^2+h^2+a^2+k^2=2c^2

\implies\,2h^2+2k^2+2a^2-2c^2=0

\text{Divide by 2}

\implies\,h^2+k^2+a^2-c^2=0

\textbf{Answer:}

\textbf{The locus of P is}

\bf\,x^2+y^2+a^2-c2=0

Find more:

If A =(-2,3) and B=(4,1) are given points find the equation of locus of point P, such that PA=2PB.

https://brainly.in/question/3201572

B and c are fixed points having coordinates (3,0) and (-3,0) respectively. If the vertical angle bac is 90 then locus

https://brainly.in/question/13799728

Find the locus of the point x=a+b sec teta,y=b+a tan teta

https://brainly.in/question/16779592

Answered by parijathakumar8802
12

Q):-Find the equation of locus of a point P such that PA^2+PB^2=2C^2,Where A (a,0), B (-a,0) and o <11<|c|.

Answer:-

x^2+y^2+a^2-c^2=0.

Explanation:-

Let P (x,y) be a point on the locus

given A (a,0),B (-a,0)

given condition is PA^2+PB^2=2C^2

(x-a)^2+(y-0)^2+(x+a)^2+(y-0)^2=2C^2

x^2+a^2-2ax+y^2+x^2+a^2+2ax+y^2=2C^2

2x^2+2y^2+2a^2-2C^2=0

2 (x^2+y^2+a^2-c^2)=0

x^2+y^2+a^2-C^2=0.

Therefore Equation of locus of P is x^2+y^2+a^2-C^2=0.

Similar questions