Math, asked by nlvraghavendra9163, 1 year ago

Find the locus of the point P such that the sum of it's distances from (0,2) and (0,-2) is 6.

Answers

Answered by MaheswariS
53

\text{Let P(h,k) be the moving point}

\text{Let the given points be A(0,2) and B(0,-2)}

\textbf{Given: }PA+PB=6

\sqrt{(h-0)^2+(k-2)^2}+\sqrt{(h-0)^2+(k+2)^2}=6

\sqrt{h^2+(k-2)^2}=6-\sqrt{h^2+(k+2)^2}

\text{squaring on both sides, we get}

h^2+(k-2)^2=[6-\sqrt{h^2+(k+2)^2}]^2

h^2+k^2+4-4k=36+(h^2+k^2+4+4k)-12\sqrt{h^2+(k+2)^2}

-4k=36+4k-12\sqrt{h^2+(k+2)^2}

-8k-36=-12\sqrt{h^2+(k+2)^2}

-4(2k+9)=-12\sqrt{h^2+(k+2)^2}

2k+9=3\sqrt{h^2+(k+2)^2}

\text{squaring once again on both sides, we get}

(2k+9)^2=9[h^2+(k+2)^2]

4k^2+81+36k=9[h^2+k^2+4+4k]

4k^2+81+36k=9h^2+9k^2+36+36k]

4k^2+81=9h^2+9k^2+36

9h^2+5k^2=45

\displaystyle\frac{h^2}{5}+\frac{k^2}{9}=1

\therefore\textsf{The locus of P is}

\displaystyle\mathsf{\frac{x^2}{5}+\frac{y^2}{9}=1}

Find more:

B and c are fixed points having coordinates (3,0) and (-3,0) respectively. If the vertical angle bac is 90 then locus

https://brainly.in/question/13799728#

Answered by Anonymous
30

AnswEr:

Let P (h,k) be any point on the locus and let A (0,2) and B (0,-2) be the given points. By the given condition.

PA + PB = 6

 \hookrightarrow \sf \:  \sqrt{ {(h - 0)}^{2}  +  {(k + 2)}^{2} }  +  \sqrt{ {(h - 0) +  {(k + 2)}^{2} }  }  \\  \\  \hookrightarrow \sf \: \sqrt{ {h}^{2}  +  {(k - 2)}^{2} }  = 6 -  \sqrt{ {h}^{2}  -  {(k + 2)}^{2}  }  \\  \\  \hookrightarrow \sf \: {h}^{2}  +  {(k - 2)}^{2}  = 36 - 12 \sqrt{ {h}^{2} +  {(k + 2)}^{2}  }  +  \\  \sf {h}^{2}  +  {(k + 2)}^{2}  \\  \\  \hookrightarrow \sf \: - 8k - 36 =  - 12 \sqrt{ {h}^{2}  +  {(k + 2)}^{2} }  \\  \\  \hookrightarrow \sf \:(2k + 9) = 3 \sqrt{ {h}^{2} +  {(k + 2)}^{2}  }  \\  \\  \hookrightarrow \sf \: {(2k + 9)}^{2}  = 9( {h}^{2}  +  {(k + 2)}^{2}  \\  \\  \hookrightarrow \sf \:4 {k}^{2}  + 36k + 81 \\  \sf = 9 {h}^{2}  + 9 {k}^{2}  + 36k + 36 \\  \\  \hookrightarrow \sf \: 9{h}^{2}  + 5 {k}^{2}  = 45

Hence, locus of (h,k) is 9x² + 5y² = 49.

Similar questions