Math, asked by sahasrayayavaram, 10 months ago

Find the locus of the point x=a+b sec teta,y=b+a tan teta

Answers

Answered by MaheswariS
5

\textbf{Given:}

x=a+b\,sec\theta

y=b+a\,tan\theta

\textbf{To find:}

\text{The locus of (x,y)}

\textbf{Solution:}

\text{Consider,}

x=a+b\,sec\theta

\implies\,sec\theta=\dfrac{x-a}{b}

y=b+a\,tan\theta

\implies\,tan\theta=\dfrac{y-b}{a}

\text{We know that,}

\bf\,sec^2\theta-tan^2\theta=1

\implies\,(\dfrac{x-a}{b})^2-(\dfrac{y-b}{a})^2=1

\implies\,\dfrac{(x-a)^2}{b^2}-\dfrac{(y-b)^2}{a^2}=1

\implies\,\dfrac{a^2(x-a)^2-b^2(y-b)^2}{a^2b^2}=1

\implies\bf\,a^2(x-a)^2-b^2(y-b)^2=a^2b^2

\therefore\textbf{The locus of (x,y) is}

\boxed{\bf\,a^2(x-a)^2-b^2(y-b)^2=a^2b^2}

Find more:

If A =(-2,3) and B=(4,1) are given points find the equation of locus of point P, such that PA=2PB.

https://brainly.in/question/3201572

B and c are fixed points having coordinates (3,0) and (-3,0) respectively. If the vertical angle bac is 90 then locus

https://brainly.in/question/13799728

Similar questions