Math, asked by gayathrikam123, 21 days ago

find the locus of third vertex of Right angled triangle the ends of the hypothenuse are (4, 0) (0, 4
)​

Answers

Answered by itsPapaKaHelicopter
2

Answer:-

 \textbf{Let the Poinťś be  }  = \: P(x,y), \: A(4 ,0) , \: B(0,4)

\text{As A And B are-ordinates of AB}

⇒AB \sqrt{(4 - 0 {)}^{2} + (0 - 4 {)}^{2}  }

⇒ \sqrt{32}

⇒PA =  \sqrt{(4 - x {)}^{2} + (0 - y {)}^{2}  }

⇒ \sqrt{(4 - x {)}^{2}  +  {y}^{2} }

⇒PB =  \sqrt{(4 - y {)}^{2}  + (0 - x {)}^{2} }

⇒ \sqrt{ {x}^{2}  + (4 - y {)}^{2} }

\text{As ∆PAB is right- angled}

⇒∠P = 90°

∴(PA {)}^{2}  + (PB {)}^{2}  = (AB {)}^{2}

⇒(4 - x {)}^{2}  +  {y}^{2}  +  {x}^{2}  + (4 - y {)}^{2}  = 32

⇒16 +  {x}^{2}  -  \frac{16x}{2}  +  {y}^{2}  +  {x}^{2}  +  {y}^{2}  + 16 - 8y = 32

⇒ {2x}^{2}  +  {2y}^{2}  - 8x - 8y = 0

⇒ {x}^{2}  +  {y}^{2}  - 4x - 4y = 0

Hence,

\text{Required locus is \: } (x - 2 {)}^{2}  + (y - 2 {)}^{2}  = 8

 \\  \\  \\  \\ \sf \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙﷻ}

Attachments:
Similar questions