Math, asked by neerudrajaydeepgoswa, 18 hours ago

Find the LSA and TSA of cuboid whose dimensions are Formula: TSA = 2 ( LB+BH+HL) and LSA = 2H(L+B)

L-22 cm, B 12 cm, H= 7.5 cm

L-15 m, B-6 m, H-9 m

L-24 m, B-25 m, H= 6 m 2. Find the TSA and LSA of a cuboid which is 8 m long, 6 m broad and 3.5 m high.

Answers

Answered by aswitha1910
1

Step-by-step explanation:

I hope the answer will help

Attachments:
Answered by Anonymous
28

Answer:

1. Find the LSA and TSA of cuboid whose dimensions are :

Formulas :

  • TSA = 2( LB+BH+HL)
  • LSA = 2H(L+B)

(a) L-22 cm, B 12 cm, H= 7.5 cm

Finding TSA of cuboid :

\longrightarrow \:  \: \sf{\pink{TSA = 2(LB +  BH + HL)}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2(22 \times 12 +  12 \times 7.5 + 7.5 \times 22)}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2(264 +  90 + 165)}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2(519)}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2 \times 519}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 1038 \:  {cm}^{2} }}}

Hence, the TSA of cuboid is 1038 cm².

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Finding LSA of cuboid :

 \longrightarrow \:  \: \sf{\purple{LSA = 2H(L + B)}}

 \longrightarrow \:  \: \sf{\purple{LSA = 2 \times 7.5(22 + 12)}}

 \longrightarrow \:  \: \sf{\purple{LSA = 15(34)}}

 \longrightarrow \:  \: \sf{\purple{LSA = 15 \times 34}}

 \longrightarrow \:  \: \sf{\purple{LSA = 510 \:  {cm}^{2}}}

Hence, the LSA of cuboid is 510 cm².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

(b) L-15 m, B-6 m, H-9 m

Finding TSA of cuboid :

\longrightarrow \:  \: \sf{\pink{TSA = 2(LB +  BH + HL)}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2(15 \times 6+ 6 \times 9+ 9 \times 15)}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2(90+ 54+ 135)}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2(279)}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2 \times 279}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 558 \:  {m}^{2}}}}

Hence, the TSA of cuboid is 558 m².

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Finding LSA of cuboid :

 \longrightarrow \:  \: \sf{\purple{LSA = 2H(L + B)}}

 \longrightarrow \:  \: \sf{\purple{LSA = 2 \times 9(15 + 6)}}

 \longrightarrow \:  \: \sf{\purple{LSA = 18(21)}}

 \longrightarrow \:  \: \sf{\purple{LSA = 18 \times 21}}

 \longrightarrow \:  \: \sf{\purple{LSA = 378 \:  {m}^{2} }}

Hence, the LSA of cuboid is 378 m².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

(c) L-24 m, B-25 m, H-6

Finding TSA of cuboid :

\longrightarrow \:  \: \sf{\pink{TSA = 2(LB +  BH + HL)}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2(24 \times 25 +  25 \times 6 + 6 \times 24)}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2(600 +150+ 144)}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2(894)}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2 \times 894}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 1788 \:  {m}^{2}}}}

Hence, the TSA of cuboid is 1788 m².

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Finding LSA of cuboid :

 \longrightarrow \:  \: \sf{\purple{LSA = 2H(L + B)}}

 \longrightarrow \:  \: \sf{\purple{LSA = 2 \times 6(24 + 25)}}

 \longrightarrow \:  \: \sf{\purple{LSA = 12(49)}}

 \longrightarrow \:  \: \sf{\purple{LSA  = 588 \:  {m}^{2}}}

Hence, the LSA of cuboid is 588 m².

\underline{\rule{2200pt}{2pt}}

2. Find the TSA and LSA of a cuboid which is 8 m long, 6 m broad and 3.5 m high.

Finding TSA of cuboid :

\longrightarrow \:  \: \sf{\pink{TSA = 2(LB +  BH + HL)}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2(8 \times 6+  6 \times 3.5 + 3.5 \times 8)}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2(48+ 21 + 28)}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2(97)}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 2  \times 97}}}

{\longrightarrow \:  \: \sf{\pink{TSA = 194 \:  {m}^{2} }}}

Hence, the TSA of cuboid is 194 m².

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Finding LSA of cuboid :

 \longrightarrow \:  \: \sf{\purple{LSA = 2H(L + B)}}

 \longrightarrow \:  \: \sf{\purple{LSA = 2 \times 3.5(8 + 6)}}

 \longrightarrow \:  \: \sf{\purple{LSA = 7(14)}}

 \longrightarrow \:  \: \sf{\purple{LSA = 7 \times 14}}

 \longrightarrow \:  \: \sf{\purple{LSA = 98 \:  {m}^{2}}}

Hence, the LSA of cuboid is 98 m².

\underline{\rule{220pt}{3pt}}

Similar questions