find the maximum and minimum value of y=3sin x - 4cos x, where x belongs to [0, π/2]
Answers
Answered by
3
Answer:
Maximum Value =5
Minimum value=-5
Step-by-step explanation:
Given y=3sinx-4cosx
Let y=asinx+bcosx+c
a=3
b= -4
c=0
Maximum value=c+sqrt (a^2+b^2)
=0+sqrt (3^2+(-4)^2)
=0+sqrt (25)
Maximum Value=5
Minimum Value=c-sqrt (a^2+b^2)
=0-5
=-5
Answered by
0
answer
maximus value =5 minimum value = 5
step by step explanation
given y = 3 sin x - 4 cosx
let y = asin x + becox+ c
a= 3 b= 4 c= 0
maximus value =c+ sqrt (a^2+ b^2)
= 0 + sqrt (3^+(-4)^2)
= 0+ sqrt (25)
maximus value 5
minimum value = c- sqrt (a^2+b^2)
= 0-5
= 5
your answer
Attachments:
Similar questions
Hindi,
27 days ago
English,
27 days ago
Math,
1 month ago
Computer Science,
1 month ago
Math,
9 months ago