Math, asked by NeethuMax6960, 10 months ago

Find the maximum and minimum values of |3sinx+2| without using derivatives

Answers

Answered by lublana
0

Max  of\mid 3sinx+2\mid=5

Min of \mid 3sinx+2\mid=1

Step-by-step explanation:

Given:

f(x)=\mid{3sinx+2}\mid

We know that

-1\leq sinx\leq 1

-3\leq 3sinx\leq 3

-3+2\leq 3sinx +2\leq 3+2

-1\leq 3sinx +2\leq 5

Maximum value of f(x)=5

We know that

\mid 3sinx+2\mid\geq 0

Substitute x=-\frac{\pi}{2}

\mid{3sin(-\frac{\pi}{2}+2}\mid

1

Because

sin(-\frac{\pi}{2})=-1

Hence, the maximum value of f(x)=5 and minimum value of f(x)=1

Similar questions