Find the maximum value of sin² (120+a) +sin² (120-a)....give ans with explanation
kvnmurty:
max is 3/2
Answers
Answered by
6
sin² (120+a) + sin² (120-a)
1/2 { 1 - cos (240+2a) } + 1/2 { 1 - cos (240-2a) }
1 - 1/2 [ cos (240 + 2a) + cos ( 240 - 2a) ]
1 - 1/2 [ cos 240 cos 2a - sin 240 sin 2a + cos 240 cos 2a + sin 240 sin 2a ]
1 - cos 240 sin 2a
1 - 1/2 sin 2a as cos 240 = cos (360 - 240)
maximum value is obtained when sin 2a is minimun and is 0 when a = 0.
so 1
1/2 { 1 - cos (240+2a) } + 1/2 { 1 - cos (240-2a) }
1 - 1/2 [ cos (240 + 2a) + cos ( 240 - 2a) ]
1 - 1/2 [ cos 240 cos 2a - sin 240 sin 2a + cos 240 cos 2a + sin 240 sin 2a ]
1 - cos 240 sin 2a
1 - 1/2 sin 2a as cos 240 = cos (360 - 240)
maximum value is obtained when sin 2a is minimun and is 0 when a = 0.
so 1
Answered by
0
sin² (120+a) + sin² (120-a)
1/2 { 1 - cos (240+2a) } + 1/2 { 1 - cos (240-2a) }
1 - 1/2 [ cos (240 + 2a) + cos ( 240 - 2a) ]
1 - 1/2 [ cos 240 cos 2a - sin 240 sin 2a + cos 240 cos 2a + sin 240 sin 2a ]
1 - cos 240 sin 2a
1 - 1/2 sin 2a as cos 240 = cos (360 - 240)
maximum value is obtained when sin 2a is minimun and is 0 when a = 0.
so 1
1/2 { 1 - cos (240+2a) } + 1/2 { 1 - cos (240-2a) }
1 - 1/2 [ cos (240 + 2a) + cos ( 240 - 2a) ]
1 - 1/2 [ cos 240 cos 2a - sin 240 sin 2a + cos 240 cos 2a + sin 240 sin 2a ]
1 - cos 240 sin 2a
1 - 1/2 sin 2a as cos 240 = cos (360 - 240)
maximum value is obtained when sin 2a is minimun and is 0 when a = 0.
so 1
Similar questions