Math, asked by lilsupah6427, 1 year ago

Find the maximum value of the expression x^4-8x^3+18x^2-8x+20 when x =2

Answers

Answered by abdul143
4

 \:  \:  \:  \green{ \huge \frak{ \star \:Hola! \:  Mate  \: \star}} \\  \\    \:  \:  \:  \:   \red {\boxed{\mathbb{✓ \: Here \:  Is  \: Your  \: Answer \: ✓ \: } }}\\  \\ \underline{ \bf{QUESTION}} :  \\  \\  \tiny \bf{Find \:  the \:  maximum \:  value \:  of \:  the \:  expression} \huge{ \rightarrow} \\  \tiny \bf{ \:   {x}^{4}  -  {8x}^{3}  +  {18x}^{2} - 8x + 20  \: when \:  x =2.} \\  \\    \underline{\bf{SOLUTION}} :  \\  \\  \large\frak{where \: x = 2} \\  \\     \pink{ \underline{\tiny\mathcal{PUTTING \:  THE \:  VALUE  \: OF \:  ' X ' \:  IN  \: THAT \:  EQUATION.}}} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \underline{\tiny \bf{    {x}^{4}  -  {8x}^{3}  +  {18x}^{2} - 8x + 20} }}\\  \tiny \blue{✓ \:  ({2)}^{4}  - 8(2)^{3} + 18( {2})^{2} - 8(2)  + 20 \: ✓  } \\  \\   \small 16 - 8 \times 8 + 18 \times 4 - 8 \times 2 + 20 \\  \\  =  >  \red{\cancel{ 16} }- 64 + 72 -   \red{\cancel{16}} + 20 \\  \\  >  >  \: 72 + 20 - 64 \\  \\  >  >  \: 92 - 64 \\   \\  \bf{ >  >  \: 28} \:     \:  \:  \:  \: \color{orange}\underline{\underline \mathcal{ANSWER}}
Similar questions