Math, asked by nilc07012, 2 days ago

Find the maximum value of the quadratic equation -6x²+3x+2 ?
please explain...
a) -19/8
b) -25/8
c) 25/8
d) 19/8

Answers

Answered by rajunaga110
1

Step-by-step explanation:

maximum value of a quadratic equation will be at x= (-b/2a)

so (-3/(2*-6)) = -3/-12 = 1/4

maximum value = -6(1/4)^2+3(1/4)+2

= -6(1/16)+3/4+2

= -3/8 +3/4 +2

= (-3+6+16)/8

= 19/8

so option d

Answered by KaurSukhvir
0

Answer:

The maximum value of the given quadratic equation is equal to 19/8.

Therefore the option (d) is correct.

Step-by-step explanation:

The given expression:   y=-6x^{2}+3x+2              ............(1)

Differentiate eq.(1) w.r.t. 'x':

\frac{dy}{dx}=\frac{d}{dx} (-6x^{2}+3x +2 )

\frac{dy}{dx}=-12x+3                                                             ...............(2)

Now,  \frac{dy}{dx} =0

  -12x+3=0\\

      12x=3\\x=\frac{1}{4}

Further derivative of eq.(2),

\frac{d^{2}x}{dy^{2}}=-12 < 0    ⇒ the maximum value

If  \frac{d^{2}y}{dx^{2}} > 0   then minimum value

If  \frac{d^{2}y}{dx^{2}} < 0  then maximum value

Therefore put x=1/5 in eq.(1) to get maximum value:

y_{max}=-6(\frac{1}{4})^{2} +3(\frac{1}{4} )+2

y_{max}=\frac{-6}{16} +\frac{3}{4} +2

y_{max}=\frac{-6+12+32}{16}

y_{max}=\frac{38}{16}

y_{max}=\frac{19}{8}

Therefore the maximum value is 19/8.

Similar questions