Math, asked by vk5544323, 11 months ago

Find the measure of each
exterior angle of a regular polygon of:
(1) 8 sides
(2) 12 sides​

Answers

Answered by anju24c
1

we know that,

sum of all the interior angles = (no. of sides - 2) × 180

so,   in an regular octagon(polygon with 8 sides)

sum of all the interior angles = (no. of sides - 2) × 180

                                                = (8 - 2) × 180

                                                = 6 × 180

                                                = 1080

sum of all the interior angles of an octagon = 1080

measure of a single interior angle = sum of all the interior angles/total sides

                                                        = 1080/8

                                                        = 135

we know that an interior and an exterior angle of a regular polygon is always supplementary(supplementary means the two angle sums up to 180)

let the exterior angle be x

so,    135 + x = 180

    ⇒ x = 180 - 135

           = 45

so, in a regular do-decagon(polygon with 12 sides)

sum of all the interior angles = (no. of sides - 2) × 180

                                                = (12-2) × 180

                                                = 10 × 180

                                                = 1800

sum of all the interior angles of an do-decagon = 1800

measure of a single interior angle = 1800/12

                                                         = 150

let the exterior angle be y

so,  150 + y = 180

   ⇒ y = 180 - 150

          = 30

exterior angle of a regular polygon of 8 sides = 45

exterior angle of a regular polygon of 12 sides​ = 30

Similar questions