Find the median
Class interval 0-8 8-16 16-24 24-32 32-40 40-48
Frequency 8 10 16 24 15 7
Answers
Median =26
Step-by-step explanation:-
SOLUTION:-
The given frequency distribution table is
Let's prepare the cumulative frequency table, as given below
Now ,
N=80
=N/2=40
The cumulative frequency just greater than 40 is 58 and the corresponding classes are 24-32
Thus , the median class is 24-32
✦Lower limit (l)=24
✦Height of the class(h)=8
✦Frequency (f)=24
✦Cumulative frequency of preceding class=34
✦N/2=40
Using below formula, Finding median
Therefore,
•Required Median=26
Step-by-step explanation:
The given frequency distribution table is
\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf \underline{Classes}&\bf \underline{Frequency} \\ \sf{} & \sf{} & \sf{} \\ 0-8&8\\8 - 16&10 \\16 - 24 & 16 \\ 24 - 32 & 24 \\32 - 40 &15 \\ 40 - 48 &7\end{array}}\end{gathered}\end{gathered}
Classes
0−8
8−16
16−24
24−32
32−40
40−48
Frequency
8
10
16
24
15
7
Let's prepare the cumulative frequency table, as given below
\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c} \tt{Classes}&\tt{Frequency}&\tt{Cumulative\;frequency} \\ \sf{} & \sf{} & \sf{} \\ 0-8&8&8\\8 - 16&10&18 \\ 16 - 24 & 16&34\\ 24-32 & 24 &58\\ 32 - 40&15&73\\40 - 48 &7 &80 \\ \sf{} & \overline{\;\;\;\;\sf{N = \Sigma f_1=80}\;\;\;\;} & \sf{} \end{array}}\end{gathered}\end{gathered}
Classes
0−8
8−16
16−24
24−32
32−40
40−48
Frequency
8
10
16
24
15
7
N=Σf
1
=80
Cumulativefrequency
8
18
34
58
73
80
N=80
=N/2=40
The cumulative frequency just greater than 40 is 58 and the corresponding classes are 24-32
Thus , the median class is 24-32
✦Lower limit (l)=24
✦Height of the class(h)=8
✦Frequency (f)=24
✦Cumulative frequency of preceding class=34
✦N/2=40
Using below formula, Finding median
\sf\bigstar \boxed{\sf Median, M_e=l+ \bigg\{h× \dfrac{ \frac{N}{2} -cf}{f} \bigg\}}★
Median,M
e
=l+{h×
f
2
N
−cf
}
\implies \sf 24 + \bigg \{8 \times \dfrac{(40 - 34}{24} \bigg \}⟹24+{8×
24
(40−34
}
\implies \sf 24 + \bigg \{\cancel{8} \times \dfrac{6}{\cancel{24}\:\:3} \bigg \}⟹24+{
8
×
24
3
6
}
\implies \sf 24 + \bigg \{\dfrac{\cancel{6}\:\:2}{\cancel{3}} \bigg \}⟹24+{
3
6
2
}
\implies \sf(24 + 2)⟹(24+2)
\implies \bf26⟹26
Therefore,
•Required Median=26
Now ,