Math, asked by Anonymous, 8 months ago

find the median of following data :

class interval :- 0-20 ,20-40,40-60,60-80,80-100,100-120,120-140

frequency:- 6,8,10,12,6,5,3​

Answers

Answered by Anonymous
153

Cumulative frequency table refer to attachment

To find :-

  • Median of given data

Solution :-

As we know that

→ Median = l + {h × (N/2 - cf/f)}

Where

  • l = lower limit
  • h = width of median class
  • cf = cumulative frequency
  • N = Σf

Now, according to given condition

→ N = Σf

→ N = 50

→ N/2 = 50/2 = 25

Cumulative frequency i.e greater than 25 is 36

Median Class = 60 - 80

  • l = 60
  • h = 20
  • f = 12
  • c.f (preceding class) = 24

→ Me = l + {h × (N/2 - cf/f)}

Substitute all the values

→ Me = 60 + {20 × (25 - 24)/12}

→ Me = 60 + {20 × 1/12}

→ Me = 60 + 20/12

→ Me = 60 + 5/3

→ Me = 60 + 1.66

→ Me = 61.66

Hence,

  • Median of given data is 61.66

Note :

  • Me denotes Median
  • Σ → Sigma → Summation
Attachments:
Answered by Anonymous
361

Answer:

\boxed{\begin{array}{cccc}\sf Class\: interval&\sf Frequency&\sf C.F\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 0-20&\sf 6&\sf 6 \\\\\sf 20-40 &\sf 8&\sf 14 \\\\\sf 40-60 &\sf 10 &\sf 24 \\\\\sf 60-80&\sf 12&\sf 36\\\\\sf 80-100 &\sf 6 &\sf 42 \\\\\sf 100-120 &\sf 5 &\sf 47 \\\\\sf 120-140 &\sf 3 &\sf 50\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{\bf{\sum\limits\:f=50}}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\end{array}}

________________________

:\implies\sf N=\sum\limits f\\\\ \\

:\implies\sf \dfrac{N}{2} = \dfrac{\sum\limits f}{2}\\\\\\

:\implies\sf \dfrac{N}{2} = \dfrac{50}{2}\\\\\\

:\implies\sf\dfrac{N}{2} = 25 \\\\

\underline{\textsf{Hence, 60 -80 is the median class.}}

___________________

\bigstar\:\:\sf Median = l + \sf\dfrac{\frac{n}{2}-C.f.}{f}\times h \\  \\

\sf Here:\\

\sf 1) \:l=Lower\:limit\:of\:median\:class=60 \\

\sf 2)\:C.f.=Cumulative\:frequency\:of\:class \: preceeding\:the\:median\:class=24\\

\sf 3)\:f= frequency\:of\:median\:class=12\\

\sf 4)\:h= Class\:interval = 20

_____________________

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

\dashrightarrow\sf\:\:Median = l +\dfrac{\frac{n}{2}-C.f.}{f}\times h\\\\\\

\dashrightarrow\sf\:\:Median = 60 +\bigg\lgroup\dfrac{25 - 24}{12}\times 20\bigg\rgroup\\\\\\

\dashrightarrow\sf\:\:Median = 60 +\bigg\lgroup\dfrac{1}{12}\times 20\bigg\rgroup\\\\\\

\dashrightarrow\sf\:\:Median = 60 +\dfrac{20}{12}\\\\\\

\dashrightarrow\sf\:\:Median = 60 + 1.66 \\\\ \\

\dashrightarrow\:\:\underline{\boxed{\sf Median = 61.66}}

\therefore\:\underline{\textsf{Median Height of the distribution is \textbf{61.66}}}.


Anonymous: Great :)
Similar questions