Math, asked by 7870242609, 11 months ago

Find the middle term in the expansion of (x/a+a/x)^12

Answers

Answered by mysticd
5

 Given \: Binomial \: \big( \frac{x}{a}+ \frac{a}{x}\big)^{12}

 Here, n = 12

 Number \: of \: terms \: in \:the \: expansion = n+1 \\= 12 + 1 \\= 13 \: (Odd)

 Middle \: term \: in \: the \: expansion \\= \big(\frac{n+1}{2}\big)^{th} \:term \\= \big( \frac{13+1}{2}\big)^{th} \:term \\=\big( \frac{14}{2}\big)^{th} \:term \\= 7^{th} \:term

 \boxed { \pink { General \:term (t_{r+1})= ^{n}C_{r} \times x^{n-r} \times a^{r}}}

 \implies Middle \:term (t_{6+1}) \\= ^{12}C_{6} \times \big(\frac{x}{a}\big)^{12-6} \times \big(\frac{a}{x}\big)^{6}

 = \frac{12!}{ ( 12-6)! 6! } \times \big(\frac{x}{a}\big)^{6} \times \big(\frac{a}{x}\big)^{6}

 = \frac{12!}{ 6! 6! }\\= \frac{12\times 11\times10\times 9\times8\times 7\times 6! }{(6\times 5\times4\times 3\times2\times 1)\times 6!}\\= \frac{308}{3}

Therefore.,

 \red { Middle \:term \:in \:the \: Expansion} \green { =  \frac{308}{3}}

•••♪

Similar questions