Math, asked by ncramesh, 5 months ago

find the mode of following ferquency distribution. class interval: 25-30,30-35,35-40,40-45,45-50,50-55. ftequency:25,34,50,42,38,15​

Answers

Answered by SarcasticL0ve
41

\begin{gathered}\begin{tabular}{|c|c|c|c|c|c|c|}\cline{1-7} \tt Class & \tt 25-30 & \tt 30-35 & \tt 35-40 & \tt 40-45 & \tt 45-50 & \tt 50-55 \\\cline{1-7}\tt Frequency &\tt 25 & \tt 34 & \tt 50 & \tt 42 & \tt 38 & \tt 15 \\\cline{1-7}\end{tabular}\end{gathered}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

Here, Maximum frequency is 50.

Then, the corresponding class 35-40 is the model class.

⠀⠀⠀⠀

\bf{\dag}\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Mode = L + \dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h}}}}\\ \\

Here,

⠀⠀⠀⠀

  • L = Lower limit = 35
  • h = Class height = 40 - 35 = 5
  • \sf f_0, Frequency of the preceding class = 34
  • \sf f_1, = Frequency of the Model class = 50
  • \sf f_2, Frequency of the succeeding class = 42

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\bf{\dag}\;{\underline{\frak{Putting\:values\:in\:formula,}}}\\ \\

:\implies\sf 35 + \dfrac{50 - 34}{(2 \times 50) - 34 - 42} \times 5\\ \\

:\implies\sf 35 + \dfrac{16}{100 - 34 - 42} \times 5\\ \\

:\implies\sf 35 + \dfrac{16}{24} \times 5\\ \\

:\implies\sf 35 + \dfrac{80}{24}\\ \\

:\implies\sf 35 + 3.33\\ \\

:\implies{\underline{\boxed{\frak{\purple{38.33}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Hence,\:The\:mode\:of\:given\:data\;is\; {\textsf{\textbf{38.33}}}.}}}

Answered by DARLO20
90

\Large\bf\pink {GiVeN,} \\

\begin{tabular}{|c|c|c|c|c|c|c|}\cline{1-7} \tt Class & \tt 25-30 & \tt 30-35 & \tt 35-40 & \tt 40-45 & \tt 45-50 & \tt 50-55 \\ \cline{1-7}\tt Frequency &\tt 25 & \tt 34 & \tt 50 & \tt 42 & \tt 38 & \tt 15 \\ \cline{1-7}\end{tabular} \\

\Large\bf\orange{To\:FiNd,} \\

  • The mode of the given frequency distribution.

\Large\bf\green{CaLcUlAtIoN,} \\

Here the maximum frequency is 50. And the corresponding class-interval is 35-40 (modal class ).

\bf\red {We\:know\:that,} \\

\orange\bigstar\:\:\bf{\color{indigo}Mode\:=\:L\:+\:\Big (\dfrac{f_1\:-\:f}{2f_1\:-\:f\:-\:f_2}\Big)\:\times{h}\:} \\

\bf\red{Where,} \\

  • L = 35

  • h = 40 - 35 = 5

  • f = 34

  • \bf{f_1} = 50

  • \bf{f_2} = 42

\longmapsto\:\:\bf{Mode\:=\:35\:+\:\Big\{\dfrac{50\:-\:34}{(2\times{50})\:-\:34\:-\:42}\Big\}\:\times{5}\:} \\

\longmapsto\:\:\bf{Mode\:=\:35\:+\:\Big(\dfrac{16}{100\:-\:34\:-\:42}\Big)\:\times{5}\:} \\

\longmapsto\:\:\bf{Mode\:=\:35\:+\:\dfrac{16}{24}\times{5}\:} \\

\longmapsto\:\:\bf{Mode\:=\:35\:+\:\dfrac{2}{3}\times{5}\:} \\

\longmapsto\:\:\bf{Mode\:=\:35\:+\:\dfrac{10}{3}\:} \\

\longmapsto\:\:\bf{Mode\:=\:35\:+\:3.33\:} \\

\longmapsto\:\:\bf\purple{Mode\:=\:38.33\:} \\

\Large\bf\therefore The mode of the given frequency distribution is 38.33.

Similar questions