find the modulus and amplitude of 1+i÷1-i
Answers
Answered by
34
modulus of 1+i÷1-i
=/√1^2+1^2 ÷ √1^2+(-1)^2/
=√2 ÷ √2=/1/
= 1
amplitude of 1+i÷1-i
=tan^-1 /(y/x)/
=tan^-1 (/(1/1)/ / /(1/-1)/)
=tan^-1 (/(1)/ / /(-1)/)
=π/2
=/√1^2+1^2 ÷ √1^2+(-1)^2/
=√2 ÷ √2=/1/
= 1
amplitude of 1+i÷1-i
=tan^-1 /(y/x)/
=tan^-1 (/(1/1)/ / /(1/-1)/)
=tan^-1 (/(1)/ / /(-1)/)
=π/2
Kanagasabapathy:
See nw
Answered by
6
1+i/1-i - 1-i/1+i
{Taking LCM of both sides}
=(1+i)^2 - (1-i)^2/(1-i)(1+i)
= 1+i^2+2i-1-i^2+2i / 1^2 -(i^2)
{Putting value of i^2}
= 1-1+2i-1+1+2i / 1+1
= 4i / 2
=0+2i
Modulus of complex no is underrot x^2+y^2: where x is real part and y is img part.
Z= underoot (0^2) + (2)^2
= underoot 0+4
= underoot 4
=2
Similar questions