Math, asked by amardeepyadav46, 10 months ago

find the modulus and argument if Z = -2i​

Answers

Answered by Anonymous
4

 \mathtt{ \huge{ \fbox{SOLUTION :}}}

Given ,

Complex number (z) = -2i

Real part of complex number (a) = 0

Imaginary part of complex number (b) = -2

We know that , the modulus (|z|) of complex number is given by

 \large \sf  \fbox{ |z| =  \sqrt{ {(a)}^{2}  +  {(b)}^{2} } }

Substitute the known values , we get

 \sf \mapsto  |z| =  \sqrt{ {(0)}^{2}  +  {( - 2)}^{2} }  \\  \\ \sf \mapsto  |z| =   \sqrt{4}  \\  \\ \sf \mapsto   |z|  = 2

Hence , the modulus of complex number is 2

We know that ,

 \sf  \large \fbox{z = r( \cos \theta  +  i\sin \theta)}

Thus ,

0 = rCos(Φ) ------- (i)

-2 = rSin(Φ) ------- (ii)

Thus , from equation (i) and (ii)

 \sf \mapsto 0  + (- 2 )=  r\cos \theta  + r \sin \theta \\  \\ \sf   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: squaring \:  both \: sides \:, \:  we \: get \\  \\  \sf \mapsto {(0)}^{2}  +  {( - 2)}^{2}   =  {(r)}^{2}  { \cos}^{2}  \theta + {(r)}^{2}  { \sin}^{2}\theta  \\  \\  \sf \mapsto 4 =  {(r)}^{2} ( { \cos}^{2}  \theta + { \sin}^{2}\theta  ) \\  \\   \sf \mapsto {(r)}^{2}  = 4 \\  \\  \sf \mapsto r =  \sqrt{4 }  \\  \\ \sf \mapsto  r = 2 \:  \:   \:  \:  \:  \:  \:  \{  \because r > 0\}

Put the value of r = 2 in equation (i) and (ii) , we get

 \sf \mapsto 0 = 2 \:  \cos \theta \\  \\  \sf \mapsto \cos \theta = 0 \\  \\ \sf \mapsto   \cos \theta =\cos  (π + π/2 ) \\  \\ \sf \mapsto   \theta = 3π/2

Hence , the argument or amplitude of complex number is /2

Similar questions