find the modulus and the argument of the following complex number 3 - 3 i
Answers
Given us the complex number, 3 - 3i
We have to find,
- Modulus of the complex number.
- Argument of the complex number.
We know, for any complex number in the form,
- x + iy
Where,
x and y are real and imaginary part of the complex number respectively.
Then, the modulus is given by
⇒ | x + iy | = √( x² + y² )
In the given complex number,
- Real part, x = 3
- Imaginary part, y = -3
So,
⇒ | 3 - 3i | = √{ (3)² + (-3)² }
⇒ | 3 - 3i | = √( 2 × 9 )
⇒ | 3 - 3i | = 3√2
So, The modulus of the given complex number is 3√2.
Let us find the argument of the given complex number, z = 3 - 3i where x = 3 and y = -3
So,
⇒ arg(z) = tan⁻¹ (3/-3)
⇒ arg(z) = tan⁻¹ (-1)
⇒ arg(z) = tan⁻¹ (tan 135°)
⇒ arg(z) = tan⁻¹ (tan 27π/36)
⇒ arg(z) = tan⁻¹ (tan 9π/12)
⇒ arg(z) = tan⁻¹ (tan 3π/4)
⇒ arg(z) = 3π / 4
Hence,
- Modulus = 3√2
- Argument = 3π / 4
Step-by-step explanation:
ANSWER ✍️
Given us the complex number, 3 - 3i
We have to find,
Modulus of the complex number.
Argument of the complex number.
We know, for any complex number in the form,
x + iy
Where,
x and y are real and imaginary part of the complex number respectively.
Then, the modulus is given by
⇒ | x + iy | = √( x² + y² )
In the given complex number,
Real part, x = 3
Imaginary part, y = -3
So,
⇒ | 3 - 3i | = √{ (3)² + (-3)² }
⇒ | 3 - 3i | = √( 2 × 9 )
⇒ | 3 - 3i | = 3√2
So, The modulus of the given complex number is 3√2.
Let us find the argument of the given complex number, z = 3 - 3i where x = 3 and y = -3
So,
⇒ arg(z) = tan⁻¹ (3/-3)
⇒ arg(z) = tan⁻¹ (-1)
⇒ arg(z) = tan⁻¹ (tan 135°)
⇒ arg(z) = tan⁻¹ (tan 27π/36)
⇒ arg(z) = tan⁻¹ (tan 9π/12)
⇒ arg(z) = tan⁻¹ (tan 3π/4)
⇒ arg(z) = 3π / 4
Hence,
Modulus = 3√2
Argument = 3π / 4