Math, asked by ansulbhadana556, 7 months ago

find the modulus of(3-2i)(2+3i)/(1+2i)(2-i)​

Answers

Answered by pulakmath007
0

SOLUTION

TO DETERMINE

The modulus of

\displaystyle  \sf{  \frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}  }

EVALUATION

Here the given complex number is

\displaystyle  \sf{  \frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}  }

Hence the required modulus is

\displaystyle  \sf{  =  \bigg|  \frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}  \bigg|  }

\displaystyle  \sf{  =   \frac{ | (3 - 2i) | \: | (2 + 3i) | }{ | (1 + 2i) | \: | (2 - i) | }   }

\displaystyle  \sf{  =   \frac{ \sqrt{ {3}^{2} +  {( - 2)}^{2}  }  \times  \:  \sqrt{ {2}^{2}  +  {3}^{2} } }{ \sqrt{ {1}^{2}  +  {2}^{2} }  \:  \times  \:  \sqrt{ {2}^{2}  +  {( - 1)}^{2} } } }

\displaystyle  \sf{  =   \frac{ \sqrt{ 9 + 4  }  \times  \:  \sqrt{ 4 + 9 } }{ \sqrt{ 1 + 4}  \:  \times  \:  \sqrt{ 4 + 1}} }

\displaystyle  \sf{  =   \frac{ \sqrt{ 13 }  \times  \:  \sqrt{ 13 } }{ \sqrt{ 5}  \:  \times  \:  \sqrt{ 5}} }

\displaystyle  \sf{  =   \frac{ 13 }{ 5} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1.If 1/2 is a root of the quadratic equation x²-mx-5/4=0 , then the value of m is?

https://brainly.in/question/21062028

2.Find the roots of the quadratic equation 6x2 +5x + 1 =0 by method of completing the squares.

https://brainly.in/question/30446963

3. Write a quadratic equation whose root are -4 and -5

https://brainly.in/question/24154410

Similar questions