Physics, asked by tharun4886, 1 year ago

Find the moment of inertia of a uniform square plate of mass m and edge a about one of its diagonals.

Answers

Answered by ruhilpadhara
3

Answer:

i =  \frac{ {ma}^{2} }{12}

Explanation:

Hope it will help u and plzz mark as brainliest.......

Attachments:
Answered by bhuvna789456
2

The moment of inertia of a uniform square plate is given by, 2 I=\frac{m a^{2}}{6}  .

Explanation:

Step 1 :

Assume that in a specific cross sectional area the distance is x.

Now it would be mass of that cross-sectional area,

                           \frac{m}{a^{2}} \times a x d x

Step 2 :

Hence the moment of this axis inertia,

                        \begin{aligned}&I=\int_{0}^{\frac{a}{2}} \frac{m}{a^{2}} \times a x d x \times x^{2}\\&I=\left[2 \times \frac{m}{a} \times \frac{x^{3}}{3}\right]^{\frac{a}{2}}\\&I=\frac{m a^{2}}{12}\end{aligned}

Step 3 :

Now for the other side in the same way,

                        \begin{aligned}&\mathrm{I}^{\prime}=2 \times \frac{\mathrm{ma}^{2}}{12}\\&I^{\prime}=\frac{m a^{2}}{6}\end{aligned}

And by the theorem of the perpendicular pole, the moment of inertia is as follows :    

                          I+I=I^{'}      

                         2 I=\frac{m a^{2}}{6}      

Therefore, the moment of inertia is, 2 I=\frac{m a^{2}}{6}  .                                            

Similar questions