Math, asked by sanidhiwar, 9 months ago

Find the mth term of an Arithmetic progression whose 12th term exceeds the 5th term by
14 and the sum of both terms is 36.​

Answers

Answered by Anonymous
57

Answer:

\sf{The \ m^{th} \ term \ is \ 1+2m.}

Given:

\sf{In \ an \ AP,}

\sf{\leadsto{12^{th} \ term \ exceeds \ the \ 5^{th}}}

\sf{term \ by \ 14.}

\sf{\leadsto{The \ sum \ of \ both \ terms \ is \ 36.}}

To find:

\sf{The \ m^{th} \ term \ of \ an \ AP.}

Solution:

\boxed{\sf{t_{n}=a+(n-1)d}}

\sf{According \ to \ the \ first \ condition.}

\sf{t_{12}-t_{5}=14}

\sf{\therefore{(a+11d)-(a+4d)=14}}

\sf{\therefore{7d=14}}

\sf{\therefore{d=\dfrac{14}{7}}}

\boxed{\sf{\therefore{d=2}}}

\sf{According \ to \ the \ second \ condition.}

\sf{t_{12}+t_{5}=36}

\sf{\therefore{(a+11d)+(a+4d)=36}}

\sf{\therefore{2a+15d=36}}

\sf{But \ d=2,}

\sf{\therefore{2a+15(2)=36}}

\sf{\therefore{2a+30=36}}

\sf{\therefore{2a=36-30}}

\sf{\therefore{2a=6}}

\sf{\therefore{a=\dfrac{6}{2}}}

\boxed{\sf{\therefore{a=3}}}

____________________________

\sf{Here, \ a=3 \ and \ d=2}

\sf{t_{n}=a+(n-1)d... formula}

\sf{\therefore{t_{m}=3+(m-1)\times2}}

\sf{\therefore{t_{m}=3+2m-2}}

\sf{\therefore{t_{m}=1+2m}}

\sf\purple{\tt{\therefore{The \ m^{th} \ term \ is \ 1+2m.}}}

Answered by InfiniteSoul
30

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • 12th term exceeds the 5th term by 14
  • the sum of both terms is 36.

\sf{\bold{\green{\underline{\underline{To\: Find}}}}}

  • The m th term of AP

\sf{\bold{\green{\underline{\underline{Solution}}}}}

\sf{\large{\bold{\pink{\bigstar{\boxed{\boxed{t_n = a + ( n - 1 ) d }}}}}}}

\sf\implies t_5 = a + ( 5 - 1 ) d

\sf\implies t_5 = a + 4 d

\sf{\bold{\blue{\underline{\underline{t_5 = a + 4d }}}}}

\sf\implies t_12 = a + ( 12 - 1 ) d

\sf\implies t_5 = a + 11 d

\sf{\bold{\blue{\underline{\underline{t_{12}= a + 12d }}}}}

  • 12th term exceeds the 5th term by 14

\sf ( a + 11d ) - ( a + 4d ) = 14

\sf  a + 11d  -  a - 4d  = 14

\sf 7d = 14

\sf d = \dfrac{14}{7}

\sf d = 2

\sf{\large{\bold{\orange{\bigstar{\boxed{\boxed{d = 2 }}}}}}}

  • the sum of both terms is 36

\sf\implies ( a + 11d ) + ( a + 4d ) = 36

\sf\implies  a + 11d +  a + 4d = 36

\sf\implies 2a + 15d = 36

\sf\implies 2a + 15\times 2 = 36 ( d = 2 )

\sf\implies 2a + 30 = 36

\sf\implies 2a = 36 - 30

\sf\implies 2a = 6

\sf\implies a = \dfrac{6}{2}

\sf\implies a = 3

\sf{\large{\bold{\orange{\bigstar{\boxed{\boxed{a = 3 }}}}}}}

__________________________

\sf{\large{\bold{\pink{\bigstar{\boxed{\boxed{t_n = a + ( n - 1 ) d }}}}}}}

\sf\implies t_m = 3 + ( m - 1 )2

\sf\implies t_m = 3 + 2m - 2

\sf\implies t_m = 1 + 2m

\sf{\large{\bold{\orange{\bigstar{\boxed{\boxed{t_m = 1 + 2m}}}}}}}

Similar questions