Math, asked by sooryags112, 1 year ago

find the non zero values of K,for which the quadratic equation Kxsquare +(K-1)x+xsquare =0 has equal roots.find the roots of equation.

Answers

Answered by dk943033
1

Answer:

Step-by-step explanation:

Hope this will help

Tell me if it is correct or incorrect

Attachments:
Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Value\:of\:k=1}}}

\green{\therefore{\text{x=0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies kx^{2}  +( k - 1)x + x^{2} = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies (k+1)x^{2}  +( k - 1)x  = 0} \\   \\   \tt{\circ  \: a =( k+1)} \\   \tt{\circ \: b = (k - 1)}\\ \tt{\circ \:c = 0}\\    \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (k -1)^{2}  -  4 \times (k+1)  \times 0 = 0 } \\  \\    \tt{: \implies \: ( k-1)^{2}-0= 0 } \\  \\  \tt{ : \implies \:   (k-1)^{2}= 0 }  \\  \\   \tt{: \implies k-1 = 0} \\  \\   \green{\tt{: \implies k = 1 }}

\text{Putting \: the  \: values\:of\:k\:in\:given\:eqn} \\   \tt{: \implies (k+1)x^{2}  +(k-1)x = 0 } \\  \\    \tt{: \implies \: ( k+1)x^{2}-0= 0 } \\  \\  \tt{ : \implies \:   2x^{2}-0= 0 }  \\  \\   \tt{: \implies 2x^{2}= 0} \\  \\   \green{\tt{: \implies x= 0}}

Similar questions