Math, asked by salinipbscmaths, 8 months ago

find the nth derivative of x.sin x​

Answers

Answered by pds39937
2

Step-by-step explanation:

Starting with the given function:

f

(

0

)

(

x

)

=

x

sin

x

Using the product rule we compute the first derivative:

f

(

1

)

(

x

)

=

x

(

d

d

x

sin

x

)

+

(

d

d

x

x

)

sin

x

=

x

cos

x

+

sin

x

Similarity, for the second derivative

f

(

2

)

(

x

)

=

x

(

d

d

x

cos

x

)

+

(

d

d

x

x

)

sin

x

+

d

d

x

sin

x

=

x

sin

x

+

cos

x

+

cos

x

=

2

cos

x

x

sin

x

And further derivatives:

f

(

3

)

(

x

)

=

2

sin

x

(

x

cos

x

+

sin

x

)

=

3

sin

x

x

cos

x

f

(

4

)

(

x

)

=

3

cos

x

(

x

sin

x

+

cos

x

)

=

4

cos

x

+

x

sin

x

So, By exploiting the phase shift properties, we have:

y

(

n

)

=

n

sin

(

x

+

(

n

1

)

π

2

)

+

x

sin

(

x

+

n

π

2

)

a

Answered by sandy1816
0

given

f(x) = xsinx \\  \\  {f}^{(0)} (x) = xsinx \\  \\

Using product rule we compute first derivative

▪\: {f}^{(1)} (x) = sinx + xcosx \\  \\  = 1.sin(x +  \frac{(1 - 1)\pi}{2} ) + xsin(x + 1. \frac{\pi}{2} ) \\  \\ similarly  \\   \\ ▪\: {f}^{(2)} (x) = cosx - xsinx + cosx \\  \\  = 2cosx - xsinx \\  \\  = 2.sin( x +  \frac{(2 - 1)\pi}{2} ) + xsin(x + 2 \frac{\pi}{2} )\\  \\ \\ ▪ \: {f}^{(3)} (x) =  - 2sinx - xcosx - sinx \\  \\  =  - 3sinx - xcosx  \\  \\  = 3sin(x +  \frac{(3 - 1)\pi}{2})  + xsin(x + 3. \frac{\pi}{2} )\\  \\  \\▪\: {f}^{(4)} (x) =  - 3cosx + xsinx - cosx \\  \\  =  - 4cosx + xsinx  \\  \\  = 4sin(x +  \frac{(4 - 1)\pi}{2} ) + xsin(x + 4. \frac{\pi}{2}) \\  \\ . \:  \: . \:  \: . \:  \: . \:  \: . \:  \: . \:  \: . \:  \: . \:  \: .

proceeding in this manner we get nth derivative as

 {f}^{(n)} (x) = nsin(x +  \frac{(n - 1)\pi}{2} ) + xsin(x + n. \frac{\pi}{2} ) \\  \\

Similar questions