Math, asked by Priyadharshan18, 11 months ago

Find the number of digits in the product of 5^72 X 8^27

Answers

Answered by sonuvuce
14

Answer:

The number of digits in the product of 5^72*8^27 are 75

Step-by-step explanation:

5^{72}\times8^{27}

=5^{72}\times(2^3)^{27}

=5^{72}\times2^{81}            (∵ (a^m)^n = a^{mn})

=5^{72}\times2^{72+9}

=5^{72}\times2^{72}\times2^9          (∵ a^{m} \times a^{n}=a^{m+n})

=(5\times2)^{72}\times2^{9}              (∵ a^m \times b^m=(ab)^m)

=(10)^{72}\times2^{9}

=512\times10^{72}

This means there will be 72 zeroes after 512!

Therefore, the number of digits in the product will be 72+3 = 75

Hope this helps.

Answered by pinquancaro
8

Answer:

The number of digits in the product is 75.

Step-by-step explanation:

Given : Expression 5^{72}\times 8^{27}

To find : The number of digits in the product ?

Solution :

Step 1 - Write the expression,

5^{72}\times 8^{27}

5^{72}\times(2^3)^{27}

Step 2 - Applying power rule, (a^m)^n = a^{mn}

5^{72}\times2^{81}

Step 3 - Split the power,

5^{72}\times2^{72+9}

5^{72}\times2^{72}\times2^9

Step 4 - Multiplying when power is same, a^m \times b^m=(ab)^m

(5\times2)^{72}\times2^{9}

(10)^{72}\times2^{9}

512\times10^{72}

Number of digits are 3+72=75

Therefore, The number of digits in the product is 75.

Similar questions