Math, asked by bsaiuttejteja3377, 9 months ago

Find the number of solutions for the pair of linear equations 3x+2y = 5 ; 2x-3y = 7.

Answers

Answered by Anonymous
2

\huge\mathcal{Answer:}

3x + 2y = 5 -  - (1)

2x - 3y = 7 -  - (2)

Multiply (1) by (2)

6x + 4y = 10 -  - (3)

6x - 9y = 21 -  - (4)

subtract eq (3) by (4)

13y =  - 11

y =  -   \frac{11}{3}

substitute the value of y in (1)

3x + 2( -  \frac{11}{13} ) = 5

3x -  \frac{22}{13}  = 5

3x =  \frac{87}{13}

x =  \frac{29}{13}

x =  \frac{29}{3} y =  \frac{ - 11}{13}

Answered by Anonymous
0

Answer:

3x + 2y = 5 - - (1)

2x - 3y = 7 - - (2)

Multiply (1) by (2)

6x + 4y = 10 - - (3)

6x - 9y = 21 - - (4)

subtract eq (3) by (4)

13y = - 1113y=−11

y = - \frac{11}{3}

substitute the value of y in (1)

3x + 2( - \frac{11}{13} ) = 5

3x - \frac{22}{13} = 5

3x = \frac{87}{13}

x = \frac{29}{13}

x = \frac{29}{3} y = \frac{ - 11}{13}

Similar questions