Math, asked by Vasukanigiri3360, 2 days ago

Find the number of solutions of x + y+ z = 17, where x, y, z are non negative
integers such that x ϵ [2,5], y ϵ [3,6], z ϵ [4,7].

Answers

Answered by user0888
47

\Large\textrm{Solution pairs are three.}

  • (x,\ y,\ z)=(4,\ 6,\ 7)
  • (x,\ y,\ z)=(5,\ 5,\ 7)
  • (x,\ y,\ z)=(5,\ 6,\ 6)

\Large\textrm{We are given that: -}

  • 2\leq x\leq5
  • 3\leq y\leq 6
  • 4\leq z\leq7

\Large\textrm{To find: -}

Number of solution pairs to x+y+z=17

\Large\textrm{We know,}

x+y=17-z\ \dots\ (1)

5\leq x+y\leq 11 and 10\leq x+y\leq13\ \because(1)

\therefore 10\leq x+y\leq 11

\Large\textrm{Possible cases}

  • (x+y)+z=10+7
  • (x+y)+z=11+6

\therefore z=6,\ 7

\Large\textrm{We know,}

y+z=17-x\ \dots\ (2)

7\leq y+z\leq13 and 10\leq y+z\leq 13\ \because\ (2)

\therefore 10\leq y+z\leq 13

\Large\textrm{Possible cases}

  • (y+z)+x=12+5
  • (y+z)+x=13+4

\therefore x=4,\ 5

\Large\textrm{We know,}

z=x=17-y\ \dots\ (3)

6\leq z+x\leq 12 and 11\leq z+x\leq 14\ \because\ (3)

\therefore 11\leq z+x\leq 12

\Large\textrm{Possible cases}

  • (z+x)+y=11+6
  • (z+x)+y=12+5

\therefore y=5,\ 6

\Large\textrm{Hence,}

  • (x,\ y,\ z)=(4,\ 6,\ 7)
  • (x,\ y,\ z)=(5,\ 5,\ 7)
  • (x,\ y,\ z)=(5,\ 6,\ 6)

anindyaadhikari13: Perfect.
Similar questions