find the number of terms of the ap -12,-9,-6........12.if 1 is added to each term of this ap , then find the sum of all terms of the ap thus obtained
Answers
Answered by
51
Let,
A.P => -12, -9, -6,........,12.
first term = a = -12
2nd term = b = -9
last term = T = 12
no. of terms = n
so, common difference = d
d = b - a = (-9) - (-12)
or, d = -9 + 12 = 3
Now,
T = a + (n-1)d
or, 12 = -12 + (n - 1)3
or, (n - 1)3 = 12 + 12 = 24
or, n - 1 = 24/3 = 8
or, n = 8 + 1
n = 9
Total no. of terms = 9
and,sum of n terms(s) = n(a + T)/2
or, s = 9(-12 + 12)3 = 0
a/q,
Sum of n terms if 1 is added to every terms(S) = s + n
S = 0 + 9 = 9
Therefore sum of n terms if 1 is added to every terms is 9.
A.P => -12, -9, -6,........,12.
first term = a = -12
2nd term = b = -9
last term = T = 12
no. of terms = n
so, common difference = d
d = b - a = (-9) - (-12)
or, d = -9 + 12 = 3
Now,
T = a + (n-1)d
or, 12 = -12 + (n - 1)3
or, (n - 1)3 = 12 + 12 = 24
or, n - 1 = 24/3 = 8
or, n = 8 + 1
n = 9
Total no. of terms = 9
and,sum of n terms(s) = n(a + T)/2
or, s = 9(-12 + 12)3 = 0
a/q,
Sum of n terms if 1 is added to every terms(S) = s + n
S = 0 + 9 = 9
Therefore sum of n terms if 1 is added to every terms is 9.
Answered by
8
Answer:
upside is the answer it is correct and verified so please mark me as a brainliest
Attachments:
Similar questions