Find the of A if tan 2A = cot (A - 24°)
Answers
Answered by
14
Answer:
___________________________________
_____________________
__________
____
☁❤
Solution:-
_____________
Given:-
Tan2A =cot(A-24°)
______________________
To find:-
Value of A
_____________________
Identity used:-
TanA =cot (90°-A)
___________________
ATQ
Tan2A =cot(A-24°)
Cot(90°-2A)=cot (A-24°)
=>90°-2A =A-24°
=>-3A=114°
=>A=38°
_____________
hope helps
Answered by
65
Answer:
Step-by-step explanation:
Given :-
tan 2A = cot (A - 24°)
To Find :-
The value of A
Formula or identity used :-
tanθ = cotθ (90° - θ)
Solution :-
⇒ tan 2A = cot (A - 24°)
⇒ cotθ (90° - 2A) = cot (A - 24°) [tanθ = cotθ (90° - θ)]
⇒ 90° - 2A = A - 24°
⇒ 3A = 90° + 24°
⇒ 3A = 114°
⇒ A = 114/3
⇒ A = 38°
Hence, The Required value of A is 38°
Similar questions