Math, asked by BrainlyNewton1, 1 year ago

Find the of A if tan 2A = cot (A - 24°)

Answers

Answered by EvilQueen01
14

Answer:

___________________________________

_____________________

__________

____

☁❤

Solution:-

_____________

Given:-

Tan2A =cot(A-24°)

______________________

To find:-

Value of A

_____________________

Identity used:-

TanA =cot (90°-A)

___________________

ATQ

Tan2A =cot(A-24°)

Cot(90°-2A)=cot (A-24°)

=>90°-2A =A-24°

=>-3A=114°

=>A=38°

_____________

hope helps

Answered by VishalSharma01
65

Answer:

Step-by-step explanation:

Given :-

tan 2A = cot (A - 24°)

To Find :-

The value of A

Formula or identity used :-

tanθ = cotθ (90° - θ)

Solution :-

⇒ tan 2A = cot (A - 24°)

⇒ cotθ (90° - 2A) = cot (A - 24°)   [tanθ = cotθ (90° - θ)]

⇒ 90° - 2A = A - 24°

⇒ 3A = 90° + 24°

⇒ 3A = 114°

⇒ A = 114/3

⇒ A = 38°

Hence, The Required value of A is 38°

Similar questions